This quick reference guide will assist you in locating a desired topic or procedure.
• Bend the pages back to match the black tab of the desired chapter number with the black tab on the edge at each table of contents page.
• Refer to the sectional table of contents for the exact pages to locate the specific topic required.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Information</td>
<td>1</td>
</tr>
<tr>
<td>Periodic Maintenance</td>
<td>2</td>
</tr>
<tr>
<td>Fuel System (DFI)</td>
<td>3</td>
</tr>
<tr>
<td>Cooling System</td>
<td>4</td>
</tr>
<tr>
<td>Engine Top End</td>
<td>5</td>
</tr>
<tr>
<td>Clutch</td>
<td>6</td>
</tr>
<tr>
<td>Engine Lubrication System</td>
<td>7</td>
</tr>
<tr>
<td>Engine Removal/Installation</td>
<td>8</td>
</tr>
<tr>
<td>Crankshaft/Transmission</td>
<td>9</td>
</tr>
<tr>
<td>Wheels/Tires</td>
<td>10</td>
</tr>
<tr>
<td>Final Drive</td>
<td>11</td>
</tr>
<tr>
<td>Brakes</td>
<td>12</td>
</tr>
<tr>
<td>Suspension</td>
<td>13</td>
</tr>
<tr>
<td>Steering</td>
<td>14</td>
</tr>
<tr>
<td>Frame</td>
<td>15</td>
</tr>
<tr>
<td>Electrical System</td>
<td>16</td>
</tr>
<tr>
<td>Appendix</td>
<td>17</td>
</tr>
</tbody>
</table>
Read OWNER’S MANUAL before operating.
Foreword

This manual is designed primarily for use by trained mechanics in a properly equipped shop. However, it contains enough detail and basic information to make it useful to the owner who desires to perform his own basic maintenance and repair work. A basic knowledge of mechanics, the proper use of tools, and workshop procedures must be understood in order to carry out maintenance and repair satisfactorily. Whenever the owner has insufficient experience or doubts his ability to do the work, all adjustments, maintenance, and repair should be carried out only by qualified mechanics.

In order to perform the work efficiently and to avoid costly mistakes, read the text, thoroughly familiarize yourself with the procedures before starting work, and then do the work carefully in a clean area. Whenever special tools or equipment are specified, do not use makeshift tools or equipment. Precision measurements can only be made if the proper instruments are used, and the use of substitute tools may adversely affect safe operation.

For the duration of the warranty period, we recommend that all repairs and scheduled maintenance be performed in accordance with this service manual. Any owner maintenance or repair procedure not performed in accordance with this manual may void the warranty.

To get the longest life out of your vehicle:

- Be alert for problems and non-scheduled maintenance.
- Use proper tools and genuine Kawasaki Motorcycle parts. Special tools, gauges, and testers that are necessary when servicing Kawasaki motorcycles are introduced by the Service Manual. Genuine parts provided as spare parts are listed in the Parts Catalog.
- Follow the procedures in this manual carefully. Don’t take shortcuts.
- Remember to keep complete records of maintenance and repair with dates and any new parts installed.

How to Use This Manual

In preparing this manual, we divided the product into its major systems. These systems became the manual’s chapters. All information for a particular system from adjustment through disassembly and inspection is located in a single chapter.

The Quick Reference Guide shows you all of the product’s system and assists in locating their chapters. Each chapter in turn has its own comprehensive Table of Contents.

The Periodic Maintenance Chart is located in the Periodic Maintenance chapter. The chart gives a time schedule for required maintenance operations.

If you want spark plug information, for example, go to the Periodic Maintenance Chart first. The chart tells you how frequently to clean and gap the plug. Next, use the Quick Reference Guide to locate the Periodic Maintenance chapter. Then, use the Table of Contents on the first page of the chapter to find the Spark Plug section.

Whenever you see these WARNING and CAUTION symbols, heed their instructions! Always follow safe operating and maintenance practices.

WARNING

This warning symbol identifies special instructions or procedures which, if not correctly followed, could result in personal injury, or loss of life.

CAUTION

This caution symbol identifies special instructions or procedures which, if not strictly observed, could result in damage to or destruction of equipment.

This manual contains four more symbols (in addition to WARNING and CAUTION) which will help you distinguish different types of information.
NOTE
○ This note symbol indicates points of particular interest for more efficient and convenient operation.
• Indicates a procedural step or work to be done.
○ Indicates a procedural sub-step or how to do the work of the procedural step it follows. It also precedes the text of a NOTE.
★ Indicates a conditional step or what action to take based on the results of the test or inspection in the procedural step or sub-step it follows.
In most chapters an exploded view illustration of the system components follows the Table of Contents. In these illustrations you will find the instructions indicating which parts require specified tightening torque, oil, grease or a locking agent during assembly.
General Information

Table of Contents

Before Servicing ... 1-2
Model Identification ... 1-7
General Specifications .. 1-8
Technical Information - Cassette Type Transmission 1-11
Technical Information - Inlet Air Pressure Sensor 1-12
Unit Conversion Table ... 1-13
1-2 GENERAL INFORMATION

Before Servicing

Before starting to perform an inspection service or carry out a disassembly and reassembly operation on a motorcycle, read the precautions given below. To facilitate actual operations, notes, illustrations, photographs, cautions, and detailed descriptions have been included in each chapter wherever necessary. This section explains the items that require particular attention during the removal and reinstallation or disassembly and reassembly of general parts.

Especially note the following:

Battery Ground

Before completing any service on the motorcycle, disconnect the battery wires from the battery to prevent the engine from accidentally turning over. Disconnect the ground wire (−) first and then the positive (+). When completed with the service, first connect the positive (+) wire to the positive (+) terminal of the battery then the negative (−) wire to the negative terminal.

Edges of Parts

Lift large or heavy parts wearing gloves to prevent injury from possible sharp edges on the parts.

Solvent

Use a high-flush point solvent when cleaning parts. High-flush point solvent should be used according to directions of the solvent manufacturer.

Cleaning Vehicle before Disassembly

Clean the vehicle thoroughly before disassembly. Dirt or other foreign materials entering into sealed areas during vehicle disassembly can cause excessive wear and decrease performance of the vehicle.
Before Servicing

Arrangement and Cleaning of Removed Parts
Disassembled parts are easy to confuse. Arrange the parts according to the order the parts were disassembled and clean the parts in order prior to assembly.

Storage of Removed Parts
After all the parts including subassembly parts have been cleaned, store the parts in a clean area. Put a clean cloth or plastic sheet over the parts to protect from any foreign materials that may collect before re-assembly.

Inspection
Reuse of worn or damaged parts may lead to serious accident. Visually inspect removed parts for corrosion, discoloration, or other damage. Refer to the appropriate sections of this manual for service limits on individual parts. Replace the parts if any damage has been found or if the part is beyond its service limit.

Replacement Parts
Replacement parts must be KAWASAKI genuine or recommended by KAWASAKI. Gaskets, O-rings, oil seals, grease seals, circlips or cotter pins must be replaced with new ones whenever disassembled.

Assembly Order
In most cases assembly order is the reverse of disassembly, however, if assembly order is provided in this Service Manual, follow the procedures given.
1-4 GENERAL INFORMATION

Before Servicing

Tightening Sequence
Generally, when installing a part with several bolts, nuts, or screws, start them all in their holes and tighten them to a snug fit. Then tighten them according to the specified sequence to prevent case warpage or deformation which can lead to malfunction. Conversely when loosening the bolts, nuts, or screws, first loosen all of them by about a quarter turn and then remove them. If the specified tightening sequence is not indicated, tighten the fasteners alternating diagonally.

Tightening Torque
Incorrect torque applied to a bolt, nut, or screw may lead to serious damage. Tighten fasteners to the specified torque using a good quality torque wrench. Often, the tightening sequence is followed twice-initial tightening and final tightening with torque wrench.

Force
Use common sense during disassembly and assembly, excessive force can cause expensive or hard to repair damage. When necessary, remove screws that have a non-permanent locking agent applied using an impact driver. Use a plastic-faced mallet whenever tapping is necessary.

Gasket, O-ring
Hardening, shrinkage, or damage of both gaskets and O-rings after disassembly can reduce sealing performance. Remove old gaskets and clean the sealing surfaces thoroughly so that no gasket material or other material remains. Install new gaskets and replace used O-rings when re-assembling.

Liquid Gasket, Non-permanent Locking Agent
For applications that require Liquid Gasket or a Non-permanent Locking Agent, clean the surfaces so that no oil residue remains before applying liquid gasket or non-permanent locking agent. Do not apply them excessively. Excessive application can clog oil passages and cause serious damage.
Before Servicing

Press

For items such as bearings or oil seals that must be pressed into place, apply small amount of oil to the contact area. Be sure to maintain proper alignment and use smooth movements when installing.

Ball Bearing and Needle Bearing

Do not remove pressed ball or needle unless removal is absolutely necessary. Replace with new ones whenever removed. Press bearings with the manufacturer and size marks facing out. Press the bearing into place by putting pressure on the correct bearing race as shown.

Pressing the incorrect race can cause pressure between the inner and outer race and result in bearing damage.

Oil Seal, Grease Seal

Do not remove pressed oil or grease seals unless removal is necessary. Replace with new ones whenever removed. Press new oil seals with manufacture and size marks facing out. Make sure the seal is aligned properly when installing.

Apply specified grease to the lip of seal before installing the seal.

Circlips, Cotter Pins

Replace circlips or cotter pins that were removed with new ones. Take care not to open the clip excessively when installing to prevent deformation.
1-6 GENERAL INFORMATION

Before Servicing

Lubrication
It is important to lubricate rotating or sliding parts during assembly to minimize wear during initial operation. Lubrication points are called out throughout this manual, apply the specific oil or grease as specified.

Direction of Engine Rotation
When rotating the crankshaft by hand, the free play amount of rotating direction will affect the adjustment. Rotate the crankshaft to positive direction (clockwise viewed from output side).

Electrical Wires
A two-color wire is identified first by the primary color and then the stripe color. Unless instructed otherwise, electrical wires must be connected to those of the same color.

Instrument
Use a meter that has enough accuracy for an accurate measurement. Read the manufacture’s instructions thoroughly before using the meter. Incorrect values may lead to improper adjustments.
Model Identification

ER650A6F/ER650A6S Left Side View

ER650A6F/ER650A6S Right Side View

ER650A6F: Australia, Malaysia
ER650A6S: Europe
1-8 GENERAL INFORMATION

General Specifications

<table>
<thead>
<tr>
<th>Items</th>
<th>ER650A6F/ER650A6S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td></td>
</tr>
<tr>
<td>Overall Length</td>
<td>2 100 mm (82.7 in.)</td>
</tr>
<tr>
<td>Overall Width</td>
<td>760 mm (29.9 in.)</td>
</tr>
<tr>
<td>Overall Height</td>
<td>1 095 mm (43.1 in.)</td>
</tr>
<tr>
<td>Wheelbase</td>
<td>1 405 mm (55.3 in.)</td>
</tr>
<tr>
<td>Road Clearance</td>
<td>140 mm (5.5 in.)</td>
</tr>
<tr>
<td>Seat Height</td>
<td>785 mm (30.9 in.)</td>
</tr>
<tr>
<td>Dry Mass</td>
<td>174 kg (383.7 lb)</td>
</tr>
<tr>
<td>Curb Mass:</td>
<td></td>
</tr>
<tr>
<td>Front</td>
<td>98 kg (216.1 lb)</td>
</tr>
<tr>
<td>Rear</td>
<td>98 kg (216.1 lb)</td>
</tr>
<tr>
<td>Fuel Tank Capacity</td>
<td>15.5 L (4.1 US gal.)</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
</tr>
<tr>
<td>Minimum Turning Radius</td>
<td>2.7 m (8.9 ft)</td>
</tr>
<tr>
<td>Engine</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>4-stroke, DOHC, 2-cylinder</td>
</tr>
<tr>
<td>Cooling System</td>
<td>Liquid-cooled</td>
</tr>
<tr>
<td>Bore and Stroke</td>
<td>83 × 60 mm (3.3 × 2.4 in.)</td>
</tr>
<tr>
<td>Displacement</td>
<td>649 cm³ (39.60 cu in.)</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>11.3 : 1</td>
</tr>
<tr>
<td>Maximum Horsepower</td>
<td>53 kW (72 PS) @8 500 r/min (rpm),</td>
</tr>
<tr>
<td>Maximum Torque</td>
<td>66 N·m (6.7 kgf·m, 49 ft·lb) @7 000 r/min (rpm),</td>
</tr>
<tr>
<td>Carburetion System</td>
<td>FI (Fuel Injection) KEIHIN TTK38 × 2</td>
</tr>
<tr>
<td>Starting System</td>
<td>Electric starter</td>
</tr>
<tr>
<td>Ignition System</td>
<td>Battery and coil (transistorized)</td>
</tr>
<tr>
<td>Timing Advance</td>
<td>Electronically advanced (digital igniter)</td>
</tr>
<tr>
<td>Ignition Timing</td>
<td>From 10° BTDC @1 300 r/min (rpm) to 35° BTDC @4 800 r/min (rpm)</td>
</tr>
<tr>
<td>Spark Plug</td>
<td>NGK CR9EIA-9</td>
</tr>
<tr>
<td>Cylinder Numbering Method</td>
<td>Left to right, 1-2</td>
</tr>
<tr>
<td>Firing Order</td>
<td>1-2</td>
</tr>
<tr>
<td>Valve Timing:</td>
<td></td>
</tr>
<tr>
<td>Inlet:</td>
<td></td>
</tr>
<tr>
<td>Open</td>
<td>31° BTDC</td>
</tr>
<tr>
<td>Close</td>
<td>61° ABDC</td>
</tr>
<tr>
<td>Duration</td>
<td>272°</td>
</tr>
<tr>
<td>Exhaust:</td>
<td></td>
</tr>
<tr>
<td>Open</td>
<td>50° BBDC</td>
</tr>
<tr>
<td>Close</td>
<td>30° ATDC</td>
</tr>
<tr>
<td>Duration</td>
<td>260°</td>
</tr>
<tr>
<td>Lubrication System</td>
<td>Forced lubrication (semi-dry sump)</td>
</tr>
<tr>
<td>Engine Oil:</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>API SE, SF or SG</td>
</tr>
<tr>
<td></td>
<td>API SH, SJ or SL with JASO MA</td>
</tr>
</tbody>
</table>
General Specifications

<table>
<thead>
<tr>
<th>Items</th>
<th>ER650A6F/ER650A6S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscosity</td>
<td>SAE 10W-40</td>
</tr>
<tr>
<td>Capacity</td>
<td>2.4 L (2.5 US qt)</td>
</tr>
<tr>
<td>Drive Train</td>
<td></td>
</tr>
<tr>
<td>Primary Reduction System:</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Gear</td>
</tr>
<tr>
<td>Reduction Ratio</td>
<td>2.095 (88/42)</td>
</tr>
<tr>
<td>Clutch Type</td>
<td>Wet multi disc</td>
</tr>
<tr>
<td>Transmission:</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>6-speed, constant mesh, return shift</td>
</tr>
<tr>
<td>Gear Ratios:</td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>2.438 (39/16)</td>
</tr>
<tr>
<td>2nd</td>
<td>1.714 (36/21)</td>
</tr>
<tr>
<td>3rd</td>
<td>1.333 (32/24)</td>
</tr>
<tr>
<td>4th</td>
<td>1.111 (30/27)</td>
</tr>
<tr>
<td>5th</td>
<td>0.966 (28/29)</td>
</tr>
<tr>
<td>6th</td>
<td>0.852 (23/27)</td>
</tr>
<tr>
<td>Final Drive System:</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Chain drive</td>
</tr>
<tr>
<td>Reduction Ratio</td>
<td>3.067 (46/15)</td>
</tr>
<tr>
<td>Overall Drive Ratio</td>
<td>5.473 @ Top gear</td>
</tr>
<tr>
<td>Frame</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Tubular, diamond</td>
</tr>
<tr>
<td>Caster (Rake Angle)</td>
<td>24.5°</td>
</tr>
<tr>
<td>Trail</td>
<td>102 mm (4.0 in.)</td>
</tr>
<tr>
<td>Front Tire:</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Tubeless</td>
</tr>
<tr>
<td>Size</td>
<td>120/70 ZR17 M/C (58W)</td>
</tr>
<tr>
<td>Rim Size</td>
<td>17 × 3.50</td>
</tr>
<tr>
<td>Rear Tire:</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Tubeless</td>
</tr>
<tr>
<td>Size</td>
<td>160/60 ZR17 M/C (69W)</td>
</tr>
<tr>
<td>Rim Size</td>
<td>17 × 4.50</td>
</tr>
<tr>
<td>Front Suspension:</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Telescopic fork</td>
</tr>
<tr>
<td>Wheel Travel</td>
<td>120 mm (4.7 in.)</td>
</tr>
<tr>
<td>Rear Suspension:</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Swingarm</td>
</tr>
<tr>
<td>Wheel Travel</td>
<td>125 mm (4.9 in.)</td>
</tr>
<tr>
<td>Brake Type:</td>
<td></td>
</tr>
<tr>
<td>Front</td>
<td>Dual discs</td>
</tr>
<tr>
<td>Rear</td>
<td>Single disc</td>
</tr>
<tr>
<td>Electrical Equipment</td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td>12 V 10 Ah</td>
</tr>
</tbody>
</table>
1-10 GENERAL INFORMATION

General Specifications

<table>
<thead>
<tr>
<th>Items</th>
<th>ER650A6F/ER650A6S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headlight:</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Semi-sealed beam</td>
</tr>
<tr>
<td>Bulb</td>
<td>12 V 55 W × 2/55 W (Hi/Lo)</td>
</tr>
<tr>
<td>Tail/Brake Light</td>
<td>12 V 5/21 W</td>
</tr>
<tr>
<td>Alternator:</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Three-phase AC</td>
</tr>
<tr>
<td>Rated Output</td>
<td>24 A/14 V @5 000 r/min (rpm)</td>
</tr>
</tbody>
</table>

Specifications are subject to change without notice, and may not apply to every country.
Cassette Type Transmission

The transmission of the current model is unable to be removed without disassembling upper and lower crankcase halves.

The ER650A enables transmission to be removed from the right side of engine as an assy, without disassembling crankcase halves (see Transmission Assy Removal in the Crankshaft/Transmission chapter).

Transmission Assy:
- Drive Shaft [A]
- Output Shaft [B]
- Shift Rods [C]
- Shift Dram [D]
- Shift Forks [E]
- Transmission Case [F]
Atmospheric pressure sensor and camshaft position sensor are not equipped with the ER650A. As a substitute of these sensors above, the ER650A recognizes atmospheric pressure and intake stroke of #1 by the signal of inlet air pressure sensor.

The ECU detects atmospheric pressure when the ignition is switched ON. While the engine is running, the ECU also presumes atmospheric pressure by analyzing the waveform of boost pressure over fixed period. The intake stroke is recognized by waveform of boost pressure, therefore the system can recognize the difference of each stroke.
Unit Conversion Table

Prefixes for Units:

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>mega</td>
<td>M</td>
<td>× 1,000,000</td>
</tr>
<tr>
<td>kilo</td>
<td>k</td>
<td>× 1,000</td>
</tr>
<tr>
<td>centi</td>
<td>c</td>
<td>× 0.01</td>
</tr>
<tr>
<td>milli</td>
<td>m</td>
<td>× 0.001</td>
</tr>
<tr>
<td>micro</td>
<td>µ</td>
<td>× 0.000001</td>
</tr>
</tbody>
</table>

Units of Mass:
- kg × 2.205 = lb
- g × 0.03527 = oz

Units of Volume:
- L × 0.2642 = gal (US)
- L × 0.2200 = gal (imp)
- L × 1.057 = qt (US)
- L × 0.8799 = qt (imp)
- L × 2.113 = pint (US)
- L × 1.816 = pint (imp)
- mL × 0.03381 = oz (US)
- mL × 0.02816 = oz (imp)
- mL × 0.06102 = cu in

Units of Length:
- km × 0.6214 = mile
- m × 3.281 = ft
- mm × 0.03937 = in

Units of Torque:
- N·m × 0.1020 = kgf·m
- N·m × 0.7376 = ft·lb
- N·m × 8.851 = in·lb

Units of Force:
- N × 0.1020 = kg
- N × 0.2248 = lb
- kg × 9.807 = N
- kg × 2.205 = lb

Units of Pressure:
- kPa × 0.01020 = kgf/cm²
- kPa × 0.1450 = psi
- cmHg × 1.333 = kPa

Units of Speed:
- km/h × 0.6214 = mph

Units of Temperature:

\[
\frac{9}{5} (\text{°C} + 40) - 40 = \text{°F}
\]

\[
\frac{5}{9} (\text{°F} + 40) - 40 = \text{°C}
\]
Periodic Maintenance

Table of Contents

- Periodic Maintenance Chart .. 2-3
- Torque and Locking Agent ... 2-6
- Specifications .. 2-11
- Special Tools .. 2-13
- Periodic Maintenance Procedures .. 2-14
 - Fuel System (DFI) .. 2-14
 - Fuel Hose Inspection (fuel leak, damage, installation condition) .. 2-14
 - Throttle Control System Inspection ... 2-14
 - Idle Speed Inspection ... 2-15
 - Idle Speed Adjustment .. 2-15
 - Air Cleaner Element Cleaning .. 2-16
 - Engine Vacuum Synchronization Inspection ... 2-17
- Cooling System ... 2-19
 - Coolant Level Inspection ... 2-19
 - Radiator Hose and Pipe Inspection (coolant leak, damage, installation condition) 2-20
- Air Suction System .. 2-20
 - Air Suction System Damage Inspection ... 2-20
 - Engine Top End ... 2-20
 - Valve Clearance Inspection ... 2-20
 - Valve Clearance Adjustment .. 2-22
- Clutch ... 2-25
 - Clutch Operation Inspection .. 2-25
- Wheels/Tires .. 2-25
 - Air Pressure Inspection ... 2-25
 - Tire/Tire Damage Inspection ... 2-26
 - Tire Tread Wear, Abnormal Wear Inspection ... 2-26
 - Wheel Bearing Damage Inspection ... 2-27
- Drive Train .. 2-27
 - Drive Chain Lubrication Condition Inspection ... 2-27
 - Drive Chain Slack Inspection ... 2-28
 - Drive Chain Slack Adjustment .. 2-28
 - Wheel Alignment Inspection ... 2-29
 - Drive Chain Wear Inspection .. 2-30
- Chain Guide Inspection ... 2-30
- Brake System ... 2-31
 - Brake Fluid Leak (Brake Hose and Pipe) Inspection ... 2-31
 - Brake Hose Damage and Installation Condition Inspection ... 2-31
 - Brake Operation Inspection ... 2-31
 - Brake Fluid Level Inspection .. 2-32
 - Brake Pad Wear Inspection .. 2-33
 - Brake Light Switch Operation Inspection ... 2-33
- Suspensions .. 2-34
 - Front Forks/Rear Shock Absorber Operation Inspection ... 2-34
 - Front Fork Oil Leak Inspection .. 2-34
 - Rear Shock Absorber Oil Leak Inspection .. 2-34
- Steering System .. 2-35

http://mototh.com
2-2 PERIODIC MAINTENANCE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steering Play Inspection</td>
<td>2-35</td>
</tr>
<tr>
<td>Steering Play Adjustment</td>
<td>2-35</td>
</tr>
<tr>
<td>Steering Stem Bearing Lubrication</td>
<td>2-36</td>
</tr>
<tr>
<td>Electrical System</td>
<td>2-37</td>
</tr>
<tr>
<td>Spark Plug Condition Inspection</td>
<td>2-37</td>
</tr>
<tr>
<td>Lights and Switches Operation Inspection</td>
<td>2-38</td>
</tr>
<tr>
<td>Headlight Aiming Inspection</td>
<td>2-40</td>
</tr>
<tr>
<td>Sidestand Switch Operation Inspection</td>
<td>2-41</td>
</tr>
<tr>
<td>Engine Stop Switch Operation Inspection</td>
<td>2-42</td>
</tr>
<tr>
<td>Others</td>
<td>2-43</td>
</tr>
<tr>
<td>Chassis Parts Lubrication</td>
<td>2-43</td>
</tr>
<tr>
<td>Bolts, Nuts and Fasteners Tightness Inspection</td>
<td>2-44</td>
</tr>
<tr>
<td>Replacement Parts</td>
<td>2-45</td>
</tr>
<tr>
<td>Air Cleaner Element Replacement</td>
<td>2-45</td>
</tr>
<tr>
<td>Engine Oil Change</td>
<td>2-45</td>
</tr>
<tr>
<td>Oil Filter Replacement</td>
<td>2-46</td>
</tr>
<tr>
<td>Fuel Hose Replacement</td>
<td>2-46</td>
</tr>
<tr>
<td>Coolant Change</td>
<td>2-47</td>
</tr>
<tr>
<td>Radiator Hose and O-ring Replacement</td>
<td>2-50</td>
</tr>
<tr>
<td>Brake Hose and Pipe Replacement</td>
<td>2-51</td>
</tr>
<tr>
<td>Brake Fluid Change</td>
<td>2-51</td>
</tr>
<tr>
<td>Master Cylinder Rubber Parts Replacement</td>
<td>2-53</td>
</tr>
<tr>
<td>Caliper Rubber Parts Replacement</td>
<td>2-54</td>
</tr>
<tr>
<td>Spark Plug Replacement</td>
<td>2-56</td>
</tr>
</tbody>
</table>
Periodic Maintenance Chart

The scheduled maintenance must be done in accordance with this chart to keep the motorcycle in good running condition. The initial maintenance is vitally important and must not be neglected.

<table>
<thead>
<tr>
<th>INSPECTION</th>
<th>FREQUENCY</th>
<th>* ODOMETER READING</th>
<th>See Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Whichever comes first</td>
<td>× 1 000 km (× 1 000 mile)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Every</td>
<td>1 (0.6) 6 (4) 12 (7.5) 18 (12) 24 (15) 30 (20) 36 (24)</td>
<td></td>
</tr>
<tr>
<td>Fuel System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air cleaner element - clean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Throttle control system (play, smooth return, no drag) - inspect</td>
<td>year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine vacuum synchronization - inspect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idle speed - inspect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel leak (fuel hose and pipe) - inspect</td>
<td>year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel hose and pipe damage - inspect</td>
<td>year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel hose and pipe installation condition - inspect</td>
<td>year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coolant level - inspect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coolant leak (radiator hose and pipe) - inspect</td>
<td>year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiator hose damage - inspect</td>
<td>year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiator hose installation condition - inspect</td>
<td>year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Suction System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air suction system damage - inspect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine Top End</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve clearance - inspect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clutch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clutch operation (play, disengagement, engagement) - inspect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheels and Tires</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tire air pressure - inspect</td>
<td>year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheel/tire damage - inspect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tire tread wear, abnormal wear - inspect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheel bearing damage - inspect</td>
<td>year</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive Train</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive chain lubrication condition - inspect #</td>
<td>Every 600 km (400 mile)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive chain slack - inspect #</td>
<td>Every 1 000 km (600 mile)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive chain wear - inspect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain guide wear - inspect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake fluid leak (brake hose and pipe) - inspect</td>
<td>year</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://mototh.com
Periodic Maintenance Chart

<table>
<thead>
<tr>
<th>FREQUENCY</th>
<th>* ODOMETER READING (\times 1,000) km ((\times 1,000) mile)</th>
<th>See Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREQUENCY</td>
<td>1 (0.6)</td>
<td>6 (4)</td>
</tr>
<tr>
<td>INSPECTION</td>
<td>Every</td>
<td></td>
</tr>
<tr>
<td>Brake hose and pipe damage - inspect</td>
<td>year</td>
<td>●</td>
</tr>
<tr>
<td>Brake hose installation condition - inspect</td>
<td>year</td>
<td>●</td>
</tr>
<tr>
<td>Brake operation (effectiveness, play, no drag) - inspect</td>
<td>year</td>
<td>●</td>
</tr>
<tr>
<td>Brake fluid level - inspect</td>
<td>6 months</td>
<td>●</td>
</tr>
<tr>
<td>Brake pad wear - inspect #</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake light switch operation - inspect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suspensions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front forks/rear shock absorber operation (damping and smooth stroke) - inspect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front forks/rear shock absorber oil leak - inspect</td>
<td>year</td>
<td>●</td>
</tr>
<tr>
<td>Steering System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering play - inspect</td>
<td>year</td>
<td>●</td>
</tr>
<tr>
<td>Steering stem bearings - lubricate</td>
<td>2 years</td>
<td>●</td>
</tr>
<tr>
<td>Electrical System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spark plug condition - inspect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lights and switches operation - inspect</td>
<td>year</td>
<td>●</td>
</tr>
<tr>
<td>Headlight aiming - inspect</td>
<td>year</td>
<td>●</td>
</tr>
<tr>
<td>Sidestand switch operation - inspect</td>
<td>year</td>
<td>●</td>
</tr>
<tr>
<td>Engine stop switch operation - inspect</td>
<td>year</td>
<td>●</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chassis parts - lubricate</td>
<td>year</td>
<td>●</td>
</tr>
<tr>
<td>Bolts and nuts tightness - inspect</td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>

#: Service more frequently when operating in severe conditions; dusty, wet, muddy, high speed or frequent starting/stoppage.

*: For higher odometer readings, repeat at the frequency interval established here.

http://mototh.com
PERIODIC MAINTENANCE 2-5

Periodic Maintenance Chart

Periodic Replacement Parts

<table>
<thead>
<tr>
<th>CHANGE/REPLACE ITEM</th>
<th>FREQUENCY</th>
<th>ODOMETER READING (× 1 000 km)</th>
<th>See Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 (0.6) 12 (7.5) 24 (15) 36 (24) 48 (30)</td>
<td></td>
</tr>
<tr>
<td>Air cleaner element #</td>
<td>Every</td>
<td>× 1 000 km (× 1 000 mile)</td>
<td></td>
</tr>
<tr>
<td>Engine oil #</td>
<td>2 years</td>
<td>1 12 24 36 48</td>
<td>2-45</td>
</tr>
<tr>
<td>Oil filter</td>
<td>year</td>
<td>1 12 24 36 48</td>
<td>2-46</td>
</tr>
<tr>
<td>Fuel hose</td>
<td>4 years</td>
<td>1 12 24 36 48</td>
<td>2-46</td>
</tr>
<tr>
<td>Coolant</td>
<td>3 years</td>
<td>1 12 24 36 48</td>
<td>2-47</td>
</tr>
<tr>
<td>Radiator hose and O-ring</td>
<td>3 years</td>
<td>1 12 24 36 48</td>
<td>2-50</td>
</tr>
<tr>
<td>Brake hose and pipe</td>
<td>4 years</td>
<td>1 12 24 36 48</td>
<td>2-51</td>
</tr>
<tr>
<td>Brake fluid</td>
<td>2 years</td>
<td>1 12 24 36 48</td>
<td>2-51</td>
</tr>
<tr>
<td>Rubber parts of master cylinder and caliper</td>
<td>4 years</td>
<td>1 12 24 36 48</td>
<td>2-53</td>
</tr>
<tr>
<td>Spark plug</td>
<td></td>
<td>1 12 24 36 48</td>
<td>2-56</td>
</tr>
</tbody>
</table>

*: Service more frequently when operating in severe conditions; dusty, wet, muddy, high speed or frequent starting/stopping.

#: For higher odometer readings, repeat at the frequency interval established here.
2-6 PERIODIC MAINTENANCE

Torque and Locking Agent

The following tables list the tightening torque for the major fasteners requiring use of a non-permanent locking agent or liquid gasket.

Letters used in the "Remarks" column mean:
- **AL**: Tighten the two clamp bolts alternately two times to ensure even tightening torque.
- **EO**: Apply engine oil.
- **L**: Apply a non-permanent locking agent to the threads.
- **Lh**: Left-hand threads
- **MO**: Apply molybdenum disulfide oil solution.
- **R**: Replacement Parts
- **S**: Tighten the fasteners following the specified sequence.
- **Si**: Apply silicone grease (ex. PBC grease).
- **SS**: Apply silicone sealant.

<table>
<thead>
<tr>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>Fuel System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Temperature Sensor</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>Speed Sensor Bolt</td>
<td>7.8</td>
<td>0.80</td>
</tr>
<tr>
<td>Fuel Pump Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Oxygen Sensor</td>
<td>44.1</td>
<td>4.50</td>
</tr>
<tr>
<td>Cooling System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radiator Hose Clamp Screws</td>
<td>2.0</td>
<td>0.20</td>
</tr>
<tr>
<td>Water Pump Impeller Bolt</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Water Pump Cover Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Water Pump Drain Bolt</td>
<td>7.0</td>
<td>0.70</td>
</tr>
<tr>
<td>Thermostat Housing Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Water Temperature Sensor</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>Engine Top End</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Suction Valve Cover Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Cylinder Head Cover Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Camshaft Cap Bolts</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>Cylinder Head Bolts (M10 New Bolts)</td>
<td>54</td>
<td>5.5</td>
</tr>
<tr>
<td>Cylinder Head Bolts (M10 Used Bolts)</td>
<td>49</td>
<td>5.0</td>
</tr>
<tr>
<td>Cylinder Bolt (M8)</td>
<td>27.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Cylinder Nut (M10)</td>
<td>49</td>
<td>5.0</td>
</tr>
<tr>
<td>Cylinder Head Bolts (M6)</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>Cylinder Bolts (M6)</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>Throttle Body Holder Bolts</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>Rear Camshaft Chain Guide Bolt</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>Camshaft Chain Tensioner Mounting Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Camshaft Chain Tensioner Cap Bolt</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>Camshaft Sprocket Bolts</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>Spark Plugs</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>Exhaust Pipe Manifold Holder Nuts</td>
<td>17</td>
<td>1.7</td>
</tr>
<tr>
<td>Muffler Body Mounting Bolt (Front)</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>Muffler Body Mounting Bolt (Rear)</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>Baffle Plate Bolts</td>
<td>5.9</td>
<td>0.60</td>
</tr>
</tbody>
</table>

http://mototh.com
Torque and Locking Agent

<table>
<thead>
<tr>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>Clutch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Cap on Clutch Cover</td>
<td>3.9</td>
<td>0.40</td>
</tr>
<tr>
<td>Lower Cap on Clutch Cover</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Oil Filler Plug</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Clutch Cover Mounting Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Clutch Spring Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Clutch Hub Nut</td>
<td>132</td>
<td>13.5</td>
</tr>
<tr>
<td>Clutch Lever Clamp Bolts</td>
<td>7.8</td>
<td>0.80</td>
</tr>
<tr>
<td>Oil Pump Chain Guide Bolts</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>Clutch Cable Holder Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Clutch Cable Clamp Bolt</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Engine Lubrication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine Oil Drain Bolt</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>Filter Plate Bolt</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Oil Filter</td>
<td>17.2</td>
<td>1.75</td>
</tr>
<tr>
<td>Holder Mounting Bolt</td>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td>Oil Pan Bolts</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>Oil Pipe Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Oil Pipe Plate Bolt</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Oil Pressure Relief Valve</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>Oil Pressure Switch</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>Oil Pump Cover Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Oil Pump Sprocket Bolt</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>Oil Passage Plug</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>Oil Plate Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Engine Removal/Installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine Mounting Bracket Bolts</td>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td>Front Engine Mounting Bolts</td>
<td>44</td>
<td>4.5</td>
</tr>
<tr>
<td>Rear Engine Mounting Nuts</td>
<td>44</td>
<td>4.5</td>
</tr>
<tr>
<td>Crankshaft/Transmission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil Plate Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Breather Plate Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Crankcase Bolts (M9, L = 113 mm)</td>
<td>44</td>
<td>4.5</td>
</tr>
<tr>
<td>Crankcase Bolts (M9, L = 83 mm)</td>
<td>44</td>
<td>4.5</td>
</tr>
<tr>
<td>Crankcase Bolts (M8, L = 73 mm)</td>
<td>35</td>
<td>3.6</td>
</tr>
<tr>
<td>Crankcase Bolts (M8, L = 60 mm)</td>
<td>35</td>
<td>3.6</td>
</tr>
<tr>
<td>Crankcase Bolts (M8, L = 110 mm)</td>
<td>27.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Crankcase Bolts (M8, L = 50 mm)</td>
<td>27.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Crankcase Bolts (M6)</td>
<td>19.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Upper Crankcase Bolts</td>
<td>27.5</td>
<td>2.8</td>
</tr>
<tr>
<td>Shift Drum Bearing Holder Screw</td>
<td>4.9</td>
<td>0.50</td>
</tr>
<tr>
<td>Connecting Rod Big End Nuts</td>
<td>see Text</td>
<td>–</td>
</tr>
<tr>
<td>Timing Rotor Bolt</td>
<td>40</td>
<td>4.1</td>
</tr>
</tbody>
</table>
2-8 PERIODIC MAINTENANCE

Torque and Locking Agent

<table>
<thead>
<tr>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>Oil Pressure Switch</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>Oil Passage Plug</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>Gear Positioning Lever Bolt</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>Shift Shaft Return Spring pin</td>
<td>29</td>
<td>2.9</td>
</tr>
<tr>
<td>Shift Drum Cam Bolt</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>Neutral Switch</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>Transmission Case Bolts</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>Shift Rod Plate Bolt</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Neutral Switch Holder Screw</td>
<td>4.9</td>
<td>0.50</td>
</tr>
<tr>
<td>Shift Shaft Cover Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Shift Shaft Cover Screw</td>
<td>4.9</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Wheels/Tires

<table>
<thead>
<tr>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>Front Axle</td>
<td>108</td>
<td>11.0</td>
</tr>
<tr>
<td>Front Axle Clamp Bolt</td>
<td>34</td>
<td>3.5</td>
</tr>
<tr>
<td>Rear Axle Nut</td>
<td>108</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Final Drive

<table>
<thead>
<tr>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>Engine Sprocket Nut</td>
<td>125</td>
<td>12.7</td>
</tr>
<tr>
<td>Rear Axle Nut</td>
<td>108</td>
<td>11.0</td>
</tr>
<tr>
<td>Rear Sprocket Nuts</td>
<td>59</td>
<td>6.0</td>
</tr>
<tr>
<td>Speed Sensor Bolt</td>
<td>7.8</td>
<td>0.80</td>
</tr>
<tr>
<td>Speed Sensor Bracket Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Brakes

<table>
<thead>
<tr>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>Bleed Valve</td>
<td>7.8</td>
<td>0.80</td>
</tr>
<tr>
<td>Brake Hose Banjo Bolts</td>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td>Brake Lever Pivot Bolt</td>
<td>1.0</td>
<td>0.10</td>
</tr>
<tr>
<td>Brake Lever Pivot Bolt Locknut</td>
<td>5.9</td>
<td>0.60</td>
</tr>
<tr>
<td>Brake Pedal Bolt</td>
<td>8.8</td>
<td>0.90</td>
</tr>
<tr>
<td>Front Brake Disc Mounting Bolts</td>
<td>27</td>
<td>2.8</td>
</tr>
<tr>
<td>Front Brake Light Switch Screw</td>
<td>1.0</td>
<td>0.10</td>
</tr>
<tr>
<td>Front Brake Reservoir Cap Screws</td>
<td>1.0</td>
<td>0.10</td>
</tr>
<tr>
<td>Front Caliper Mounting Bolts</td>
<td>34</td>
<td>3.5</td>
</tr>
<tr>
<td>Front Master Cylinder Clamp Bolts</td>
<td>8.8</td>
<td>0.90</td>
</tr>
<tr>
<td>Rear Brake Disc Mounting Bolts</td>
<td>27</td>
<td>2.8</td>
</tr>
<tr>
<td>Rear Caliper Mounting Bolts</td>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td>Rear Master Cylinder Mounting Bolts</td>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td>Rear Master Cylinder Push Rod Locknut</td>
<td>18</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Suspension

<table>
<thead>
<tr>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>Front Axle Clamp Bolt</td>
<td>34</td>
<td>3.5</td>
</tr>
<tr>
<td>Front Fork Bottom Allen Bolts</td>
<td>30</td>
<td>3.1</td>
</tr>
<tr>
<td>Front Fork Clamp Bolts (Lower)</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>Front Fork Clamp Bolts (Upper)</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>Front Fork Top Plugs</td>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td>Rear Shock Absorber Bolt</td>
<td>59</td>
<td>6.0</td>
</tr>
</tbody>
</table>
Torque and Locking Agent

<table>
<thead>
<tr>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N·m</td>
<td>kgf-m</td>
</tr>
<tr>
<td>Rear Shock Absorber Nut</td>
<td>59</td>
<td>6.0</td>
</tr>
<tr>
<td>Swingarm Pivot Shaft Nut</td>
<td>108</td>
<td>11.0</td>
</tr>
<tr>
<td>Steering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Fork Clamp Bolts (Lower)</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>Front Fork Clamp Bolts (Upper)</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>Handlebar Holder Bolts</td>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td>Left Switch Housing Screws</td>
<td>3.5</td>
<td>0.36</td>
</tr>
<tr>
<td>Right Switch Housing Screws</td>
<td>3.5</td>
<td>0.36</td>
</tr>
<tr>
<td>Steering Stem Head Bolt</td>
<td>108</td>
<td>11.0</td>
</tr>
<tr>
<td>Steering Stem Nut</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>Frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Footpeg Stay Bolts</td>
<td>34</td>
<td>3.5</td>
</tr>
<tr>
<td>Front Fender Bolts</td>
<td>3.9</td>
<td>0.40</td>
</tr>
<tr>
<td>Front Fender Bracket Bolts</td>
<td>8.8</td>
<td>0.90</td>
</tr>
<tr>
<td>Grab Rail Mounting Bolts</td>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td>Lower Fairing Mounting Bolts</td>
<td>8.8</td>
<td>0.90</td>
</tr>
<tr>
<td>Sidestand Bolt</td>
<td>44</td>
<td>4.5</td>
</tr>
<tr>
<td>Sidestand Switch Bolt</td>
<td>8.8</td>
<td>0.90</td>
</tr>
<tr>
<td>Electrical System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternator Cover Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Alternator Lead Holding Plate Bolt</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Alternator Rotor Bolt</td>
<td>155</td>
<td>15.8</td>
</tr>
<tr>
<td>Crankshaft Sensor Bolts</td>
<td>6.0</td>
<td>0.60</td>
</tr>
<tr>
<td>Front Brake Light Switch Screw</td>
<td>1.2</td>
<td>0.12</td>
</tr>
<tr>
<td>Left Switch Housing Screws</td>
<td>3.5</td>
<td>0.36</td>
</tr>
<tr>
<td>License Plate Light Cover Screws</td>
<td>0.90</td>
<td>0.090</td>
</tr>
<tr>
<td>License Plate Light Mounting Screws</td>
<td>1.2</td>
<td>0.12</td>
</tr>
<tr>
<td>Meter Screws</td>
<td>1.2</td>
<td>0.12</td>
</tr>
<tr>
<td>Neutral Switch</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>Oil Pressure Switch</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>Oxygen Sensor</td>
<td>44.1</td>
<td>4.50</td>
</tr>
<tr>
<td>Regulator/Rectifier Bolts</td>
<td>8.8</td>
<td>0.90</td>
</tr>
<tr>
<td>Right Switch Housing Screws</td>
<td>3.5</td>
<td>0.36</td>
</tr>
<tr>
<td>Sidestand Switch Bolt</td>
<td>8.8</td>
<td>0.90</td>
</tr>
<tr>
<td>Spark Plugs</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>Speed Sensor Bolt</td>
<td>7.8</td>
<td>0.80</td>
</tr>
<tr>
<td>Starter Motor Cable Terminal Nut</td>
<td>6.0</td>
<td>0.60</td>
</tr>
<tr>
<td>Starter Motor Clutch Bolts</td>
<td>34</td>
<td>3.5</td>
</tr>
<tr>
<td>Starter Motor Mounting Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Starter Motor Terminal Locknut</td>
<td>11</td>
<td>1.1</td>
</tr>
<tr>
<td>Starter Motor Through Bolts</td>
<td>4.9</td>
<td>0.50</td>
</tr>
<tr>
<td>Stator Coil Bolts</td>
<td>12</td>
<td>1.2</td>
</tr>
</tbody>
</table>
2-10 PERIODIC MAINTENANCE

Torque and Locking Agent

<table>
<thead>
<tr>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>Timing Rotor Bolt</td>
<td>40</td>
<td>4.1</td>
</tr>
<tr>
<td>Water Temperature Sensor</td>
<td>12</td>
<td>1.2</td>
</tr>
</tbody>
</table>

The table below, relating tightening torque to thread diameter, lists the basic torque for the bolts and nuts. Use this table for only the bolts and nuts which do not require a specific torque value. All of the values are for use with dry solvent-cleaned threads.

Basic Torque for General Fasteners

<table>
<thead>
<tr>
<th>Threads Diameter (mm)</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>5</td>
<td>3.4 ~ 4.9</td>
<td>0.35 ~ 0.50</td>
</tr>
<tr>
<td>6</td>
<td>5.9 ~ 7.8</td>
<td>0.60 ~ 0.80</td>
</tr>
<tr>
<td>8</td>
<td>14 ~ 19</td>
<td>1.4 ~ 1.9</td>
</tr>
<tr>
<td>10</td>
<td>25 ~ 34</td>
<td>2.6 ~ 3.5</td>
</tr>
<tr>
<td>12</td>
<td>44 ~ 61</td>
<td>4.5 ~ 6.2</td>
</tr>
<tr>
<td>14</td>
<td>73 ~ 98</td>
<td>7.4 ~ 10.0</td>
</tr>
<tr>
<td>16</td>
<td>115 ~ 155</td>
<td>11.5 ~ 16.0</td>
</tr>
<tr>
<td>18</td>
<td>165 ~ 225</td>
<td>17.0 ~ 23.0</td>
</tr>
<tr>
<td>20</td>
<td>225 ~ 325</td>
<td>23.0 ~ 33.0</td>
</tr>
</tbody>
</table>
Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Throttle Grip Free Play</td>
<td>2 - 3 mm (0.08 - 0.12 in.)</td>
<td></td>
</tr>
<tr>
<td>Idle Speed</td>
<td>1 300 ±50 r/min (rpm)</td>
<td></td>
</tr>
<tr>
<td>Bypass Screws (Turn Out)</td>
<td>0 - 3 1/2 (for reference)</td>
<td></td>
</tr>
<tr>
<td>Engine Vacuum</td>
<td>35.3 ±1.3 kPa (265 ±10 mm Hg)</td>
<td></td>
</tr>
<tr>
<td>Air Cleaner Element</td>
<td>Polyurethane Foam</td>
<td></td>
</tr>
<tr>
<td>Coolant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type (recommended)</td>
<td>Permanent type of antifreeze</td>
<td></td>
</tr>
<tr>
<td>Color</td>
<td>Green</td>
<td></td>
</tr>
<tr>
<td>Mixed Ratio</td>
<td>Soft water 50%, Coolant 50%</td>
<td></td>
</tr>
<tr>
<td>Freezing Point</td>
<td>−35°C (−31°F)</td>
<td></td>
</tr>
<tr>
<td>Total Amount</td>
<td>1.2 L (1.3 US qt)</td>
<td></td>
</tr>
<tr>
<td>Engine Top End</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valve Clearance:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.22 - 0.31 mm (0.0087 - 0.0122 in.)</td>
<td></td>
</tr>
<tr>
<td>Inlet</td>
<td>0.15 - 0.21 mm (0.0059 - 0.0083 in.)</td>
<td></td>
</tr>
<tr>
<td>Clutch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clutch Lever Free Play</td>
<td>2 - 3 mm (0.08 - 0.12 in.)</td>
<td></td>
</tr>
<tr>
<td>Engine Lubrication System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine Oil:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>API SE, SF or SG</td>
<td></td>
</tr>
<tr>
<td>Viscosity</td>
<td>API SH, SJ or SL with JASO MA</td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>SAE 10W-40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7 L (1.8 US qt) when filter is not removed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.9 L (2.0 US qt) when filter is removed</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.4 L (2.5 US qt) when engine is completely</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dry</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Between upper and lower level lines</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(after idling or running)</td>
<td></td>
</tr>
<tr>
<td>Wheels/Tires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tread Depth:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front</td>
<td>6.5 mm (0.26 in.)</td>
<td>1 mm (0.04 in.),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(AT, CH, DE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.6 mm (0.06 in.)</td>
</tr>
<tr>
<td>Rear</td>
<td>9.0 mm (0.35 in.)</td>
<td>Up to 130 km/h (80 mph):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 mm (0.08 in.),</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over 130 km/h (80 mph):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 mm (0.12 in.)</td>
</tr>
<tr>
<td>Air Pressure (when Cold):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front</td>
<td>Up to 180 kg (397 lb) load:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>225 kPa (2.25 kgf/cm², 32 psi)</td>
<td></td>
</tr>
<tr>
<td>Rear</td>
<td>Up to 180 kg (397 lb) load:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>250 kPa (2.50 kgf/cm², 36 psi)</td>
<td></td>
</tr>
</tbody>
</table>
2-12 PERIODIC MAINTENANCE

Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive Chain Slack</td>
<td>30 – 40 mm (1.2 – 1.6 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Drive Chain Wear (20-link Length)</td>
<td>317.5 – 318.2 mm (12.50 – 12.53 in.)</td>
<td>323 mm (12.7 in.)</td>
</tr>
<tr>
<td>Standard Chain:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Make</td>
<td>ENUMA</td>
<td>– – –</td>
</tr>
<tr>
<td>Type</td>
<td>EK520MVXL1</td>
<td>– – –</td>
</tr>
<tr>
<td>Link</td>
<td>114 links</td>
<td>– – –</td>
</tr>
<tr>
<td>Brakes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake Fluid:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>DOT4</td>
<td>– – –</td>
</tr>
<tr>
<td>Brake Pad Lining Thickness:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front</td>
<td>4.5 mm (0.18 in.)</td>
<td>1 mm (0.04 in.)</td>
</tr>
<tr>
<td>Rear</td>
<td>5.0 mm (0.20 in.)</td>
<td>1 mm (0.04 in.)</td>
</tr>
<tr>
<td>Brake Light Timing:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front</td>
<td>Pulled ON</td>
<td>– – –</td>
</tr>
<tr>
<td>Rear</td>
<td>ON after about 10 mm (0.39 in.) of pedal travel</td>
<td>– – –</td>
</tr>
<tr>
<td>Electrical System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spark Plug Gap</td>
<td>0.8 – 0.9 mm (0.03 – 0.04 in.)</td>
<td>– – –</td>
</tr>
</tbody>
</table>

AT: Austria
CH: Switzerland
DE: Germany

http://mototh.com
Special Tools

Inside Circlip Pliers:
57001-143

Extension Tube:
57001-1578

Steering Stem Nut Wrench:
57001-1100

Pilot Screw Adjuster, E:
57001-1603

Jack:
57001-1238

Jack Attachment:
57001-1608

Oil Filter Wrench:
57001-1249
Periodic Maintenance Procedures

Fuel System (DFI)
Fuel Hose Inspection (fuel leak, damage, installation condition)
- The fuel hose is designed to be used throughout the motorcycle’s life without any maintenance. However, if the motorcycle is not properly handled, the high pressure inside the fuel line can cause fuel to leak [A] or the hose to burst. Remove the fuel tank (see Fuel Tank Removal Fuel System (DFI) chapter) and check the fuel hose.
 - Replace the fuel hose if any fraying, cracks [B] or bulges [C] are noticed.

- Check that the hoses are routed according to Cable, Wire, and Hose Routing section in the Appendix chapter.
 - Replace the hose if it has been sharply bent or kinked.

Hose Joints (A)

Fuel Hose (B)

- Check that the hose joints are securely connected.
 - Push and pull [A] the hose joint [B] back and forth more than two times, and make sure it is locked.
 - If it does not locked, reinstall the hose joint.

WARNING

> Make sure the hose joint is installed correctly on the delivery pipe by sliding the joint, or the fuel could leak.

Throttle Control System Inspection

- Check that the throttle grip moves smoothly from full open to close [A], and the throttle closes quickly and completely by the return spring in all steering positions.
 - If the throttle grip doesn’t return properly, check the throttle cable routing, grip free play, and cable damage. Then lubricate the throttle cable.

- Check the throttle grip free play [A].
 - If the free play is incorrect, adjust the throttle cable.

Throttle Grip Free Play

Standard: 2 ~ 3 mm (0.08 ~ 0.12 in.)
Periodic Maintenance Procedures

If necessary, adjust the throttle cable as follows.

- Loosen the locknut [A] at the upper end of the accelerator cable.
- Turn the adjuster [B] in completely so as to give the throttle grip plenty of play.

- Loosen the locknut [A] at the middle of the decelerator cable.
- Turn the adjuster [B] until there is no play when the throttle grip is completely closed.
- Tighten the locknut.
- Turn the accelerator cable adjuster until the proper amount of throttle grip free play is obtained.
- Tighten the locknut.

Idle Speed Inspection

- Start the engine and warm it up thoroughly.
- With the engine idling, turn the handlebar to both sides [A].
- If handlebar movement changes the idle speed, the throttle cables may be improperly adjusted or incorrectly routed or damaged. Be sure to correct any of these conditions before riding (see Throttle Control System Inspection or Cable, Wire, and Hose Routing section in the Appendix chapter).

WARNING

Operation with improperly adjusted, incorrectly routed or damaged cables could result in an unsafe riding condition.

- Check idle speed.
- If the idle speed is out of the specified range, adjust it.

Idle Speed

- Standard: 1,300 ±50 r/min (rpm)

Idle Speed Adjustment

- Start the engine and warm it up thoroughly.
- Turn the adjusting screw [A] until the idle speed is correct.
- Open and close the throttle a few times to make sure that the idle speed is within the specified range. Readjust if necessary.
2-16 PERIODIC MAINTENANCE

Periodic Maintenance Procedures

Air Cleaner Element Cleaning

NOTE

○ In dusty areas, the element should be cleaned more frequently than the recommended interval.
○ After riding through rain or on muddy roads, the element should be cleaned immediately.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>If dirt or dust is allowed to pass through into the throttle assy, the throttle may become stuck, possibly causing accident.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>If dirt gets through into the engine, excessive engine wear and possibly engine damage will occur.</td>
</tr>
</tbody>
</table>

- Remove the fuel tank (see Fuel Tank Removal in the Fuel System (DFI) chapter).
- Remove:
 - Air Switching Valve Hose [A] (Disconnect)
 - Air Cleaner Element Screw [B]
 - Air Cleaner Element [C]

- Remove:
 - Upper Plastic Holder [A]
 - Element [B]

NOTE

○ The wire screen [A] is fastened with an adhesive for the shaded portion [B]. Do not remove the wire screen.
Periodic Maintenance Procedures

A WARNING

Clean the element in a well-ventilated area, and make sure that there are no sparks or flame anywhere near the working area. Because of the danger of highly flammable liquids, do not use gasoline or a low flash-point solvent to clean the element.

- Clean the element [A] in a bath of high flash-point solvent, and then dry it with compressed air or by shaking it.
- After cleaning, saturate a clean, lint-free towel with SE, SF, or SG class SAE 30 oil and apply the oil to the element by tapping the element outside with the towel.
- Visually check the element for tears or breaks.
- If the element has any tears or breaks, replace the element.

- Install the element unit [A] with the foam element side (gray) [B] facing down.

Engine Vacuum Synchronization Inspection

NOTE

- These procedures are explained on the assumption that the inlet and exhaust systems of the engine are in good condition.

- Situate the motorcycle so that it is vertical.
- Remove the center fairing (see Center Fairing Removal in the Frame chapter).
- Pull off the rubber caps [A] from the fitting of each throttle body (In the photo, the throttle body has been removed for clarity).

CAUTION

- Do not remove the inlet air pressure sensor hose [B] on the left fitting of the throttle body.

- Connect a commercially available vacuum gauge and hoses [A] to the fittings of the throttle body as shown.
- Connect a highly accurate tachometer to one of the stick coil primary leads.
2-18 PERIODIC MAINTENANCE

Periodic Maintenance Procedures

- Start the engine and warm it up thoroughly.
- Check the idle speed.
 - Tachometer [A]
- Open and close the throttle.
- If the idle speed is out of the specified range, adjust it.

CAUTION

Do not measure the idle speed by the tachometer of the meter unit.

- While idling the engine, inspect the engine vacuum, using the vacuum gauge [B].

Engine Vacuum

- Standard: 35.3 ±1.3 kPa (265 ±10 mmHg) at Idle Speed 1 300 ±50 r/min (rpm)

- If any one vacuum is not within the specification, turn in the bypass screws until it seats fully but not tightly.

Special Tool - Pilot Screw Adjuster, E [A]: 57001-1603

CAUTION

Do not over tighten them. They could be damaged, requiring replacement.

- Turn out the bypass screw of the higher vacuum between #1 [A] and #2 [B] to the lower vacuum.
- Open and close the throttle valves after each measurement and adjust the idle speed as necessary.
- Inspect the vacuums as before.
 - If both vacuums are within the specification, finish the engine vacuum synchronization.
- If any vacuum can not be adjusted within the specification, remove the bypass screws #1, #2 and clean them.

- Remove the bypass screw [A], spring [B], washer [C] and O-ring [D].
 - Check the bypass screw and its hole for carbon deposits.
 - If any carbon accumulates, wipe the carbon off the bypass screw and the hole, using a cotton pad penetrated with a high-flash point solvent.
 - Replace the O-ring with a new one.
 - Check the tapered portion [E] of the bypass screw for wear or damage.
 - If the bypass screw is worn or damaged, replace it.
 - Turn in the bypass screw until it seats fully but not tightly.
Periodic Maintenance Procedures

- Repeat the same procedure for other bypass screws.
- Repeat the synchronization.

★ If the vacuums are correct, check the output voltage of the main throttle sensor (see Main Throttle Sensor Output Voltage Inspection in the Fuel System (DFI) chapter).

Main Throttle Sensor Output Voltage
Connections to ECU
 Meter (+) → Y/W lead (terminal 7)
 Meter (−) → BR/BK lead (terminal 28)
Standard:
 1.055 – 1.095 V DC (at idle throttle opening)

★ If the output voltage is out of the range, check the throttle input voltage (see Main Throttle Sensor Input Voltage Inspection in the Fuel System (DFI) chapter).

- Remove the vacuum gauge hoses and install the vacuum hoses and rubber caps.

Cooling System
Coolant Level Inspection

NOTE
 ○ Check the level when the engine is cold (room or ambient temperature).

- Check the coolant level in the reserve tank [A] with the motorcycle held perpendicular (Do not use the sidestand).
 ★ If the coolant level is lower than the "L" line [B], remove the right center fairing (see Center Fairing Removal in the Frame chapter) and unscrew the reserve tank cap, and add coolant to the "F" level line [C].
 "L": low
 "F": full

CAUTION
For refilling, add the specified mixture of coolant and soft water. Adding water alone dilutes the coolant and degrades its anticorrosion properties. The diluted coolant can attack the aluminum engine parts. In an emergency, soft water alone can be added. But the diluted coolant must be returned to the correct mixture ratio within a few days.
If coolant must be added often or the reservoir tank has run completely dry, there is probably leakage in the cooling system. Check the system for leaks. Coolant ruins painted surfaces. Immediately wash away any coolant that spills on the frame, engine, wheels or other painted parts.
2-20 PERIODIC MAINTENANCE

Periodic Maintenance Procedures

Radiator Hose and Pipe Inspection (coolant leak, damage, installation condition)
- The high pressure inside the radiator hose and pipe can cause coolant to leak [A] or the hose to burst if the line is not properly maintained.
- Visually inspect the hoses for signs of deterioration. Squeeze the hoses. A hose should not be hard and brittle, nor should it be soft or swollen.
- Replace the hose if any fraying, cracks [B] or bulges [C] are noticed.
- Check that the hoses are securely connected and clamps are tightened correctly.

Torque - Radiator Hose Clamp Screws: 2.0 N·m (0.20 kgf·m, 17 in-lb)

Air Suction System

Air Suction System Damage Inspection
- Remove the fuel tank (see Fuel Tank Removal in the Fuel System (DFI) chapter).
- Remove the fuel hose (see Fuel Hose Replacement).
- Connect:
 - Fuel Pump Lead Connector [A]
 - Extension Tube [B]

Special Tool - Extension Tube: 57001-1578
- Pull the air switching valve hose [C] out of the air cleaner housing.
- Start the engine and run it at idle speed.
- Plug [A] the air switching valve hose end with your finger and feel vacuum pulsing in the hose.
- If there is no vacuum pulsation, check the hose line for leak. If there is no leak, check the air switching valve (see Air Switching Valve Unit Test in the Electrical System chapter) or air suction valve (see Air Suction Valve Inspection in the Engine Top End chapter).

Engine Top End

Valve Clearance Inspection

NOTE
- Valve clearance must be checked and adjusted when the engine is cold (room temperature).
- Remove the cylinder head cover (see Cylinder Head Cover Removal in the Engine Top End chapter).
- Unscrew the upper [A] and lower [B] caps on the clutch cover.
Periodic Maintenance Procedures

• Check the valve clearance when the pistons are at TDC.
 ○ The pistons are numbered beginning with the engine left side.
• Using a wrench [A] on the crankshaft rotation bolt, turn the crankshaft clockwise until the "1|T" mark on the timing rotor is aligned with the notch [B] in the edge of the upper hole in the clutch cover for #1 piston and "2|T" mark for #2 piston.

1|T Mark [A]
2|T Mark [B]
Hole [C] of Upper Cap
Notch [D] in Edge of Upper Hole

○ Measure the valve clearance of the valves for which the cam are turned away from each other.

• Using the thickness gauge [A], measure the valve clearance between cam and valve lifter.

Valve Clearance
 Standard:
 Exhaust 0.22 – 0.31 mm (0.0087 – 0.0122 in.)
 Inlet 0.15 – 0.21 mm (0.0059 – 0.0083 in.)

○ Each piston has two inlet and two exhaust valves. Measure these two inlet or exhaust valves at the same crankshaft position.

Valve Clearance Measuring Position
 #1 Piston TDC at End of Compression Stroke →
 Inlet valve clearances of #1 piston, and
 Exhaust valve clearances of #1 piston

NOTE
 ○ Check the valve clearance using this method only. Checking the clearance at any other cam position may result in improper valve clearance.
2-22 PERIODIC MAINTENANCE

Periodic Maintenance Procedures

Valve Clearance Measuring Position
- #2 Piston TDC at End of Compression Stroke →
 - Inlet valve clearances of #2 piston, and
 - Exhaust valve clearances of #2 piston

If the valve clearance is not within the specified range, first record the clearance, and adjust it.

Valve Clearance Adjustment
- To change the valve clearance, remove the camshaft chain tensioner, camshafts and valve lifters. Replace the shim with one of a different thickness.

NOTE
- Mark and record the valve lifter and shim locations so they can be reinstalled in their original positions.
- If there is no clearance, select a shim which is several sizes smaller and then measure the clearance.

- To select a new shim which brings the valve clearance within the specified range, refer to the Valve Clearance Adjustment Charts.
- Apply a thin coat of molybdenum disulfide grease to the valve lifters.
- Install the camshafts. Be sure to time the camshafts properly (see Camshaft Installation in the Engine Top End chapter).
- Remeasure any valve clearance that was adjusted. Readjust if necessary.

CAUTION
- Do not put shim stock under the shim. This may cause the shim to pop out at high rpm, causing extensive engine damage.
- Do not grind the shim. This may cause it to fracture, causing extensive engine damage.
PERIODIC MAINTENANCE 2-23

VALVE CLEARANCE ADJUSTMENT CHART INLET VALVE

1. Measure the clearance (when engine is cold).
2. Check present shim size.
3. Match clearance in vertical column with present shim size in horizontal column.
4. Install the shim specified where the lines intersect. This shim will give the proper clearance.

Example: Present shim is 2.95 mm
 Measured clearance is 0.45 mm
 Replace 2.95 mm shim with 3.20 mm shim.

5. Remeasure the valve clearance and readjust if necessary.
 VALVE CLEARANCE ADJUSTMENT CHART EXHAUST VALVE

1. Measure the clearance (when engine is cold).
2. Check present shim size.
3. Match clearance in vertical column with present shim size in horizontal column.
4. Install the shim specified where the lines intersect. This shim will give the proper clearance.
5. Remeasure the valve clearance and readjust if necessary.

Example: Present shim is 2.95 mm.
Measured clearance is 0.47 mm.
Replace 2.95 mm shim with 3.15 mm shim.
Periodic Maintenance Procedures

Clutch

Clutch Operation Inspection
- Pull the clutch lever just enough to take up the free play [A].
- Measure the gap between the lever and the lever holder.
 ★ If the gap is too wide, the clutch may not release fully. If the gap is too narrow, the clutch may not engage fully. In either case, adjust it.

Clutch Lever Free Play
 Standard: 2 – 3 mm (0.08 – 0.12 in.)

To avoid a serious burn, never touch the engine or exhaust pipe during clutch adjustment.

- Turn the adjuster [A] so that 5 – 6 mm (0.20 – 0.24 in.) [B] of threads are visible.
- Slide the dust cover [A] at the middle of the clutch cable out of place.
- Loosen the locknut [B] at the middle of clutch cable.
- Turn the adjusting nut [C] until the free play is correct.

Be sure that the outer cable end at the clutch lever is fully seated in the adjuster at the clutch lever, or it could slip into place later, creating enough cable play to prevent clutch disengagement.

- After the adjustment, tighten the locknut and start the engine and check that the clutch does not slip and that it releases properly.

Wheels/Tires

Air Pressure Inspection
- Remove the air valve cap.
- Measure the tire air pressure with an air pressure gauge [A] when the tires are cold (that is, when the motorcycle has not been ridden more than a mile during the past 3 hours).
- Install the air valve cap.
 ★ Adjust the tire air pressure according to the specifications if necessary.

Air Pressure (when Cold)
 Front: Up to 180 kg (397 lb)
 225 kPa (2.25 kgf/cm², 32 psi)
 Rear: Up to 180 kg (397 lb)
 250 kPa (2.50 kgf/cm², 36 psi)
2-26 PERIODIC MAINTENANCE

Periodic Maintenance Procedures

Wheel/Tire Damage Inspection

- Remove any imbedded stones [A] or other foreign particles [B] from tread.
- Visually inspect the tire for cracks and cuts, and replace the tire if necessary. Swelling or high spots indicate internal damage, requiring tire replacement.
- Visually inspect the wheel for cracks, cuts and dents damage.
- If any damage is found, replace the wheel if necessary.

Tire Tread Wear, Abnormal Wear Inspection

As the tire tread wears down, the tire becomes more susceptible to puncture and failure. An accepted estimate is that 90% of all tire failures occur during the last 10% of tread life (90% worn). So it is false economy and unsafe to use the tires until they are bald.

- Measure the tread depth at the center of the tread with a depth gauge [A]. Since the tire may wear unevenly, take measurement at several places.
- If any measurement is less than the service limit, replace the tire (see Tire Removal/Installation in the Wheels/Tires chapter).

Tread Depth

| Standard | Front | 6.5 mm (0.26 in.) |
| | Rear | 9.0 mm (0.35 in.) |

<table>
<thead>
<tr>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
</tr>
<tr>
<td>(AT, CH, DE)</td>
</tr>
<tr>
<td>1 mm (0.04 in.)</td>
</tr>
<tr>
<td>1.6 mm (0.06 in.)</td>
</tr>
<tr>
<td>Rear</td>
</tr>
<tr>
<td>2 mm (0.08 in.)</td>
</tr>
<tr>
<td>(Up to 130 km/h (80 mph))</td>
</tr>
<tr>
<td>3 mm (0.12 in.)</td>
</tr>
<tr>
<td>(Over 130 km/h (80 mph))</td>
</tr>
</tbody>
</table>

WARNING

To ensure safe handling and stability, use only the recommended standard tires for replacement, inflated to the standard pressure.

NOTE

- Most countries may have their own regulations a minimum tire tread depth: be sure to follow them.
- Check and balance the wheel when a tire is replaced with a new one.

http://mototh.com
Periodic Maintenance Procedures

Wheel Bearing Damage Inspection
• Raise the front wheel off the ground with jack (see Front Wheel Removal in the Wheels/Tires chapter).
• Turn the handlebar all the way to the right or left.
• Inspect the roughness of the front wheel bearing by pushing and pulling [A] the wheel.
• Spin [B] the front wheel lightly, and check for smoothly turn, roughness, binding or noise.
★ If roughness, binding or noise is found, remove the front wheel and inspect the wheel bearing (see Front Wheel Removal, Hub Bearing Inspection in the Wheels/Tires chapter).

• Raise the rear wheel off the ground with stand (see Rear Wheel Removal in the Wheels/Tires chapter).
• Inspect the roughness of the rear wheel bearing by pushing and pulling [A] the wheel.
• Spin [B] the rear wheel lightly, and check for smoothly turn, roughness, binding or noise.
★ If roughness, binding or noise is found, remove the rear wheel and inspect the wheel bearing (see Rear Wheel Removal, Hub Bearing Inspection in the Wheels/Tires chapter) and coupling (see Coupling Bearing Inspection in the Final Drive chapter).

Drive Train

Drive Chain Lubrication Condition Inspection
• If a special lubricant is not available, a heavy oil such as SAE 90 is preferred to a lighter oil because it will stay on the chain longer and provide better lubrication.
• If the chain appears especially dirty, clean it before lubrication.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>The O-rings between the side plates seal in the lubricant between the pin and the bushing. To avoid damaging the O-rings and resultant loss of lubricant, observe the following rules. Use only kerosene or diesel oil for cleaning an O-ring drive chain. Any other cleaning solution such as gasoline or trichloroethylene will cause deterioration and swelling of the O-ring. Immediately blow the chain dry with compressed air after cleaning. Complete cleaning and drying the chain within 10 minutes.</td>
</tr>
</tbody>
</table>
2-28 PERIODIC MAINTENANCE

Periodic Maintenance Procedures

- Apply oil to the sides of the rollers so that oil will penetrate to the rollers and bushings. Apply the oil to the O-rings so that the O-rings will be coated with oil.
- Wipe off any excess oil.
 - Oil Applied Areas [A]
 - O-rings [B]

Drive Chain Slack Inspection

NOTE
- Check the slack with the motorcycle setting on its side-stand.
- Clean the chain if it is dirty, and lubricate it if it appears dry.

- Check the wheel alignment (see Wheel Alignment Inspection).
- Rotate the rear wheel to find the position where the chain is tightest.
- Measure the vertical movement (chain slack) [A] midway between the sprockets.
- If the chain slack exceeds the standard, adjust it.

Chain Slack

- Standard: 30 – 40 mm (1.2 – 1.6 in.)

Drive Chain Slack Adjustment

- Remove the cotter pin [A], and loosen the axle nut [B].
- Loosen the both chain adjuster locknuts [C].
- If the chain is too loose, turn in the left and right chain adjuster nuts [D] evenly.
- If the chain is too tight, turn out the left and right chain adjuster nuts evenly, and kick the wheel forward.
- Turn both chain adjuster nuts evenly until the drive chain has the correct amount of slack. To keep the chain and wheel properly aligned, the value [E] on the left wheel alignment adjuster [F] should align with the same (left or right) edge [G] of inspection window on the swingarm that the right wheel alignment adjuster value aligns with.

WARNING

Misalignment of the wheel will result in abnormal wear and may result in an unsafe riding condition.

- Tighten both chain adjuster locknuts securely.
- Tighten the axle nut.

Torque - Rear Axle Nut: 108 N·m (11.0 kgf·m, 80 ft·lb)
- Turn the wheel, measure the chain slack again at the tightest position, and readjust if necessary.
Periodic Maintenance Procedures

• Insert a new cotter pin [A].

 NOTE
 ○ When inserting the cotter pin, if the slots in the nut do not align with the cotter pin hole in the axle, tighten the nut clockwise [B] up to next alignment.
 ○ It should be within 30°.
 ○ Loosen once and tighten again when the slot goes past the nearest hole.

• Bend the cotter pin [A] over the nut [B].

 WARNING
 If the rear axle nut is not securely tightened or the cotter pin is not installed, an unsafe riding condition may result.

Wheel Alignment Inspection

• Check that the value [A] on the left wheel alignment adjuster [B] aligns with the same (left or right) edge [C] of inspection window on the swingarm that the right wheel alignment adjuster value aligns with.

 ★ If they do not, adjust the chain slack and align the wheel alignment (see Drive Chain Slack Adjustment).

 NOTE
 ○ Wheel alignment can be also checked using the straightedge or string method.

 WARNING
 Misalignment of the wheel will result in abnormal wear, and may result in an unsafe riding condition.
Drive Chain Wear Inspection

- **Remove:**
 - Chain Cover (see Swingarm Removal in the Suspension chapter)
 - Rotate the rear wheel to inspect the drive chain for damaged rollers, and loose pins and links.
 - If there is any irregularity, replace the drive chain.
 - Lubricate the drive chain if it appears dry.
 - Stretch the chain taut by hanging a 98 N (10 kg, 20 lb) weight [A] on the chain.
 - Measure the length of 20 links [B] on the straight part [C] of the chain from the pin center of the 1st pin to the pin center of the 21st pin. Since the chain may wear unevenly, take measurements at several places.
 - If any measurements exceed the service limit, replace the chain. Also, replace the front and rear sprockets when the drive chain is replaced.

Drive Chain 20-link Length

- **Standard:** 317.5 – 318.2 mm (12.50 – 12.53 in.)
- **Service Limit:** 323 mm (12.7 in.)

WARNING

If the drive chain wear exceeds the service limit, replace the chain or an unsafe riding condition may result. A chain that breaks or jumps off the sprockets could snag on the engine sprocket or lock the rear wheel, severely damaging the motorcycle and causing it to go out of control.

For safely, use only the standard chain. It is an endless type and should not be cut for installation.

Standard Chain

- **Make:** ENUMA
- **Type:** EK520MVXL1
- **Link:** 114 links

Chain Guide Inspection

- **Remove:**
 - Swingarm (see Swingarm Removal in the Suspension chapter)
 - Visually inspect the chain guide [A].
 - Replace the chain guide if it shows any signs of abnormal wear or damage.
Periodic Maintenance Procedures

Brake System

Brake Fluid Leak (Brake Hose and Pipe) Inspection
- Apply the brake lever or pedal and inspect the brake fluid leak from the brake hoses [A] and fittings [B].
- If the brake fluid leaked from any position, inspect or replace the problem part.

Brake Hose Damage and Installation Condition Inspection
- Inspect the brake hoses and fittings for deterioration, cracks and signs of leakage.
- The high pressure inside the brake line can cause fluid to leak [A] or the hose to burst if the line is not properly maintained. Bend and twist the rubber hose while examining it.
- Replace the hose if any crack [B], bulge [C] or leakage is noticed.
- Tighten any brake hose banjo bolts.

Torque - Brake Hose Banjo Bolts: 25 N·m (2.5 kgf·m, 18 ft·lb)

- Inspect the brake hose routing.
- If any brake hose routing is incorrect, route the brake hose according to Cable, Wire, and Hose Routing section in the Appendix chapter.

Brake Operation Inspection
- Inspect the operation of the front and rear brake by running the vehicle on the dry road.
- If the brake operation is insufficiency, inspect the brake system.

⚠️ WARNING
When inspecting by running the vehicle, note a surrounding traffic situation enough in the place of safety.
2-32 PERIODIC MAINTENANCE

Periodic Maintenance Procedures

Brake Fluid Level Inspection

- Check that the brake fluid level in the front brake reservoir [A] is above the lower level line [B].

NOTE

- Hold the reservoir horizontal by turning the handlebar when checking brake fluid level.

- If the fluid level is lower than the lower level line, fill the reservoir to the upper level line [C] in the reservoir.

- Remove the seat (see Seat Removal in the Frame chapter).
- Check that the brake fluid level in the rear brake reservoir [A] is above the lower level line [B].
- If the fluid level is lower than the lower level line, fill the reservoir to the upper level line [C].

WARNING

Change the brake fluid in the brake line completely if the brake fluid must be refilled but the type and brand of the brake fluid that is already in the reservoir are unidentified. After changing the fluid, use only the same type and brand of fluid thereafter.

Recommended Disc Brake Fluid

Grade: DOT4

- Follow the procedure below to install the rear brake fluid reservoir cap correctly.
 - First, tighten the rear brake fluid reservoir cap [B] clockwise [C] by hand until slight resistance is felt indicating that the cap is seated on the reservoir body, then tighten the cap an additional 1/6 turn [D] while holding the brake fluid reservoir body [A].
Periodic Maintenance Procedures

Brake Pad Wear Inspection
- Check the lining thickness [A] of the pads in each caliper.
- If the lining thickness of either pad is less than the service limit [B], replace both pads in the caliper as a set.

<table>
<thead>
<tr>
<th>Pad Lining Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard:</td>
</tr>
<tr>
<td>Front: 4.5 mm (0.18 in.)</td>
</tr>
<tr>
<td>Rear: 5.0 mm (0.20 in.)</td>
</tr>
<tr>
<td>Service Limit: 1 mm (0.04 in.)</td>
</tr>
</tbody>
</table>

Brake Light Switch Operation Inspection
- Turn on the ignition switch.
- The brake light [A] should go on when the brake lever is applied or after the brake pedal is depressed about 10 mm (0.39 in.).

- If it does not, adjust the brake light switch.
- While holding the switch body, turn the adjusting nut [A] to adjust the switch.

CAUTION
To avoid damaging the electrical connections inside the switch, be sure that the switch body does not turn during adjustment.

- If it does not go on, inspect or replace the following items.
 - Battery (see Charging Condition Inspection in the Electrical System chapter)
 - Brake Light (see Tail/Brake Light Removal in the Electrical System chapter)
 - Main Fuse 30 A and Taillight Fuse 10 A (see Fuse Inspection in the Electrical System chapter)
 - Front Brake Light Switch [A] (see Switch Inspection in the Electrical System chapter)
 - Rear Brake Light Switch (see Switch Inspection in the Electrical System chapter)
 - Harness (see Wiring Inspection in the Electrical System chapter)
Suspensions

Front Forks/Rear Shock Absorber Operation Inspection

- Pump the forks down and up [A] 4 or 5 times, and inspect the smooth stroke.
- If the forks do not smoothly or noise is found, inspect the fork oil level or fork clamps (see Front Fork Oil Change in the Suspension chapter).

- Pump the seat down and up [A] 4 or 5 times, and inspect the smooth stroke.
- If the shock absorber does not smoothly stroke or noise is found, inspect the oil leak (see Rear Shock Absorber Oil Leak Inspection).

Front Fork Oil Leak Inspection

- Visually inspect the front forks [A] for oil leakage.
- Replace or repair any defective parts, if necessary.

Rear Shock Absorber Oil Leak Inspection

- Visually inspect the shock absorber [A] for oil leakage.
- If the oil leakage is found on it, replace the shock absorber with a new one.
Periodic Maintenance Procedures

Steering System

Steering Play Inspection

• Raise the front wheel off the ground with jack.
 Special Tools - Jack: 57001-1238
 Jack Attachment: 57001-1608

• With the front wheel pointing straight ahead, alternately tap each end of the handlebar. The front wheel should swing fully left and right from the force of gravity until the fork hits the stop.
 ★If the wheel binds or catches before the stop, the steering is too tight.

• Feel for steering looseness by pushing and pulling the forks.
 ★If you feel looseness, the steering is too loose.

NOTE

○ The cables and wiring will have some effect on the motion of the fork which must be taken into account.
○ Be sure the wires and cables are properly routed.
○ The bearings must be in good condition and properly lubricated in order for any test to be valid.

Steering Play Adjustment

• Remove:
 Headlight Assy (see Headlight Removal/Installation in the Electrical System chapter)
 Handlebar (see Handlebar Removal in the Steering chapter)
 Upper Fork Clamp Bolts [A]
 Steering Stem Head Bolt Plug [B]
 Stem Head Bolt [C]

• Remove the steering stem head [D].

• Straighten the claws [A] of the claw washer.

• Remove the steering stem locknut [B] and claw washer [C].
2-36 PERIODIC MAINTENANCE

Periodic Maintenance Procedures

- Adjust the steering.
 Special Tool - Steering Stem Nut Wrench [A]: 57001-1100
 ★ If the steering is too tight, loosen the stem nut [B] a fraction of a turn.
 ★ If the steering is too loose, tighten the stem nut a fraction of a turn.

 NOTE
 ○ Turn the stem nut 1/8 turn at time maximum.

- Install the claw washer [A] so that its bent side [B] faces upward, and engage the bent claws with the grooves of stem locknut [C].
- Hand tighten the stem locknut until it touches the claw washer.
- Tighten the stem locknut clockwise until the claws are aligned with the grooves (ranging from 2nd to 4th) of stem nut [D], and bend the 2 claws downward [E].
- Install the steering stem head.
- Install the washer, and tighten the stem head bolt.
- Tighten:
 Torque - Steering Stem Head Bolt: 108 N·m (11.0 kgf·m, 80 ft·lb)
 Front Fork Clamp Bolts (Upper): 20 N·m (2.0 kgf·m, 15 ft·lb)

- Check the steering again.
 ★ If the steering is still too tight or too loose, repeat the adjustment.
 ★ Install the removed parts (see appropriate chapters).

Steering Stem Bearing Lubrication

- Remove the steering stem (see Stem, Stem Bearing Removal in the Steering chapter).
- Using a high flash-point solvent, wash the upper and lower ball bearings in the cages, and wipe the upper and lower outer races, which are press-fitted into the frame head pipe, clean off grease and dirt.
- Visually check the outer races and the ball bearings.
 ★ Replace the bearing assemblies if they show wear or damage.
- Pack the upper and lower ball bearings [A] in the cages with grease, and apply a light coat of grease to the upper and lower outer races.
- Install the steering stem (see Stem, Stem Bearing Installation in the Steering chapter).
- Adjust the steering (see Steering Play Adjustment).
Periodic Maintenance Procedures

Electrical System

Spark Plug Condition Inspection

- Remove the spark plugs (see Spark Plug Replacement).
- Visually inspect the spark plugs.
- If the spark plug center electrode [A] and/or side electrode [B] are corroded or damaged, or if the insulator [C] is cracked, replace the plug.
- If the spark plug is dirtied or the carbon is accumulated, replace the spark plug.
- Measure the gap [D] with a wire-type thickness gauge.
- If the gap is incorrect, replace the spark plug.

Spark Plug Gap: 0.8 ~ 0.9 mm (0.03 ~ 0.04 in.)

- Use the standard spark plug or its equivalent.

Spark Plug: CR9EIA-9
2-38 PERIODIC MAINTENANCE

Periodic Maintenance Procedures

Lights and Switches Operation Inspection

First Step

• Turn on the ignition switch.
• The following lights should go on according to below table.

<table>
<thead>
<tr>
<th>Light</th>
<th>Goes On</th>
</tr>
</thead>
<tbody>
<tr>
<td>City Light [A]</td>
<td>goes on</td>
</tr>
<tr>
<td>Taillight [B]</td>
<td>goes on</td>
</tr>
<tr>
<td>License Plate Light [C]</td>
<td>goes on</td>
</tr>
<tr>
<td>Meter Panel LCD [D]</td>
<td>goes on</td>
</tr>
<tr>
<td>Neutral Indicator Light (LED) [E]</td>
<td>goes on</td>
</tr>
<tr>
<td>Oil Pressure/Water Temperature Warning Indicator Light (LED) [F]</td>
<td>goes on</td>
</tr>
<tr>
<td>FI Indicator Light (LED) [G]</td>
<td>goes on (about 2 seconds)</td>
</tr>
</tbody>
</table>

★ If the light does not go on, inspect or replace the following item.
- Battery (see Charging Condition Inspection in the Electrical System chapter)
- Applicable Bulb (see Wiring Diagram in the Electrical System chapter)
- Meter Unit for Meter Panel LCD (see Electronic Combination Meter Unit Inspection in the Electrical System chapter)
- Meter Unit for Neutral Indicator Light (LED) (see Electronic Combination Meter Unit Inspection in the Electrical System chapter)
- Meter Unit for Oil Pressure/Water Temperature Warning Indicator Light (LED) (see Electronic Combination Meter Unit Inspection in the Electrical System chapter)
- Meter Unit for FI Indicator Light (LED) (see Electronic Combination Meter Unit Inspection in the Electrical System chapter)
- ECU (see ECU Power Supply Inspection in the Fuel System (DFI) chapter)
- Main Fuse 30 A and Taillight Fuse 10 A (see Fuse Inspection in the Electrical System chapter)
- Ignition Switch (see Switch Inspection in the Electrical System chapter)
- Neutral Switch (see Switch Inspection in the Electrical System chapter)
- Harness (see Wiring Inspection in the Electrical System chapter)

• Turn off the ignition switch.
• The all lights should go off.
★ If the light does not go off, replace the ignition switch.

Second Step

• Turn the ignition switch to P (Park) position.
• The city light, taillight and license plate light should go on.
★ If the light does not go on, inspect or replace the following item.
- Ignition Switch (see Switch Inspection in the Electrical System chapter)
Periodic Maintenance Procedures

Third Step
- Turn on the turn signal switch [A] (left or right position).
- The left or right turn signal lights [B] (front and rear) according to the switch position should flash.
- The turn signal indicator light (LED) [C] in the meter unit should flash.
 ★If the each light does not flash, inspect or replace the following item.
 - Turn Signal Light Bulb (see Turn Signal Light Bulb Replacement in the Electrical System chapter)
 - Meter Unit for Turn Signal Light Indicator Light (LED) (see Electronic Combination Meter Unit Inspection in the Electrical System chapter)
 - Turn Signal Relay Fuse 10 A (see Fuse Inspection in the Electrical System chapter)
 - Turn Signal Switch (see Switch Inspection in the Electrical System chapter)
 - Turn Signal Relay (see Turn Signal Relay Inspection in the Electrical System chapter)
 - Harness (see Wiring Inspection in the Electrical System chapter)
- Push the turn signal switch.
- The turn signal lights and indicator light (LED) should go off.
 ★If the light does not go off, inspect or replace the following item.
 - Turn Signal Switch (see Switch Inspection in the Electrical System chapter)
 - Turn Signal Relay (see Turn Signal Relay Inspection in the Electrical System chapter)

Fourth Step
- Set the dimmer switch [A] to low beam position.
- Start the engine.
- The low beam headlight should go on.
 ★If the low beam headlight does not go on, inspect or replace the following item.
 - Headlight Low Beam Bulb (see Headlight Bulb Replacement in the Electrical System chapter)
 - Headlight Fuse 10 A (see Fuse Inspection in the Electrical System chapter)
 - Dimmer Switch (see Switch Inspection in the Electrical System chapter)
 - Headlight Relay in Relay Box (see Relay Circuit Inspection in the Electrical System chapter)
 - Harness (see Wiring Inspection in the Electrical System chapter)
2-40 PERIODIC MAINTENANCE

Periodic Maintenance Procedures

- Set the dimmer switch to high beam position.
- The low beam [A] and high beam [B] headlights should go on.
- The high beam indicator light (LED) [C] should go on.
 - If the high beam headlight and/or high beam indicator light (LED) does not go on, inspect or replace the following item.
 - Headlight High Beam Bulb (see Headlight Bulb Replacement in the Electrical System chapter)
 - Dimmer Switch (see Switch Inspection in the Electrical System chapter)
- Turn off the engine stop switch.
- The low beam and high beam headlights should stay going on.
 - If the headlights and high beam indicator light (LED) does go off, inspect or replace the following item.
 - Headlight Relay in Relay Box (see Relay Circuit Inspection in the Electrical System chapter)
- Turn off the ignition switch.
- The headlights and high beam indicator light (LED) should go off.

Headlight Aiming Inspection

- Inspect the headlight beam for aiming.
 - If the headlight beam points to one side rather than straight ahead, adjust the horizontal beam.

Headlight Beam Horizontal Adjustment

- Turn the horizontal adjuster [A] on the headlight with the screwdriver in or out until the beam points straight ahead.
 - If the headlight beam points too low or high, adjust the vertical beam.

Headlight Beam Vertical Adjustment

- Turn the vertical adjuster [A] on the headlight with the screwdriver in or out to adjust the headlight vertically.
Periodic Maintenance Procedures

NOTE
○ ON high beam, the brightest points should be slightly below horizontal with the motorcycle on its wheels and the rider seated. Adjust the headlight to the proper angle according to local regulations.

Low Beam [A]
Height of Headlight Center [B]
High Beam [C]

Sidestand Switch Operation Inspection
• Inspect the sidestand switch [A] operation accordance to below table.

Sidestand Switch Operation

<table>
<thead>
<tr>
<th>Sidestand</th>
<th>Gear Position</th>
<th>Clutch Lever</th>
<th>Engine Start</th>
<th>Engine Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>Neutral</td>
<td>Released</td>
<td>Starts</td>
<td>Continue running</td>
</tr>
<tr>
<td>Up</td>
<td>Neutral</td>
<td>Pulled in</td>
<td>Starts</td>
<td>Continue running</td>
</tr>
<tr>
<td>Up</td>
<td>In Gear</td>
<td>Released</td>
<td>Doesn’t start</td>
<td>Stops</td>
</tr>
<tr>
<td>Up</td>
<td>In Gear</td>
<td>Pulled in</td>
<td>Starts</td>
<td>Continue running</td>
</tr>
<tr>
<td>Down</td>
<td>Neutral</td>
<td>Released</td>
<td>Starts</td>
<td>Continue running</td>
</tr>
<tr>
<td>Down</td>
<td>Neutral</td>
<td>Pulled in</td>
<td>Starts</td>
<td>Continue running</td>
</tr>
<tr>
<td>Down</td>
<td>In Gear</td>
<td>Released</td>
<td>Doesn’t start</td>
<td>Stops</td>
</tr>
<tr>
<td>Down</td>
<td>In Gear</td>
<td>Pulled in</td>
<td>Doesn’t start</td>
<td>Stops</td>
</tr>
</tbody>
</table>
2-42 PERIODIC MAINTENANCE

Periodic Maintenance Procedures

★ If the sidestand switch operation does not work, inspect or replace the following item.
 Battery (see Charging Condition Inspection in the Electrical System chapter)
 Main Fuse 30 A (see Fuse Inspection in the Electrical System chapter)
 Ignition Fuse 10 A (see Fuse Inspection in the Electrical System chapter)
 Ignition Switch (see Switch Inspection in the Electrical System chapter)
 Sidestand Switch (see Switch Inspection in the Electrical System chapter)
 Engine Stop Switch (see Switch Inspection in the Electrical System chapter)
 Starter Button (see Switch Inspection in the Electrical System chapter)
 Neutral Switch (see Switch Inspection in the Electrical System chapter)
 Starter Control Relay (see Starter Relay Inspection in the Electrical System chapter)
 Relay Box (see Relay Circuit Inspection in the Electrical System chapter)
 Starter Circuit Relay (see Relay Circuit Inspection in the Electrical System chapter)
 Harness (see Wiring Inspection in the Electrical System chapter)
★ If the all parts are good condition, replace the ECU (see ECU Removal/Installation in the Fuel System (DFI) chapter).

Engine Stop Switch Operation Inspection

First Step
• Turn on the ignition switch.
• Set the neutral position.
• Turn the engine stop switch to stop position [A].
• Push the starter button.
• The engine does not start.
★ If the engine starts, inspect or replace the following item.
 Engine Stop Switch (see Switch Inspection in the Electrical System chapter)

Second Step
• Turn on the ignition switch.
• Set the neutral position.
• Turn the engine stop switch to run position [A].
• Push the starter button and run the engine.
• Turn the engine stop switch to stop position.
• Immediately the engine should be stop.
★ If the engine does not stop, inspect or replace the following item.
 Engine Stop Switch (see Switch Inspection in the Electrical System chapter)
★ If the engine stop switch is good condition, replace the ECU (see ECU Removal/Installation in the Fuel System (DFI) chapter).
Periodic Maintenance Procedures

Others

Chassis Parts Lubrication

- Before lubricating each part, clean off any rusty spots with rust remover and wipe off any grease, oil, dirt, or grime.
- Lubricate the points listed below with indicated lubricant.

NOTE

○ *Whenever the vehicle has been operated under wet or rainy conditions, or especially after using a high-pressure water spray, perform the general lubrication.*

Pivots: Lubricate with Grease.

- Brake Lever
- Brake Pedal
- Clutch Lever
- Rear Brake Joint Pin
- Sidestand

Points: Lubricate with Grease.

- Clutch Inner Cable Upper and Lower Ends [A]
- Throttle Inner Cable Upper and Lower Ends

Cables: Lubricate with Rust Inhibitor.

- Clutch Cable
- Throttle Cables

- Lubricate the cables by seeping the oil between the cable and housing.

○ The cable may be lubricated by using a commercially available pressure cable lubricator with an aerosol cable lubricant.

- With the cable disconnected at both ends, the inner cable should move freely [A] within the cable housing.

★ If cable movement is not free after lubricating, if the cable is frayed [B], or if the cable housing is kinked [C], replace the cable.
2-44 PERIODIC MAINTENANCE

Periodic Maintenance Procedures

Bolts, Nuts and Fasteners Tightness Inspection

- Check the tightness of the bolts and nuts listed here. Also, check to see that each cotter pin is in place and in good condition.

NOTE

○ For the engine fasteners, check the tightness of them when the engine is cold (at room temperature).

★ If there are loose fasteners, retighten them to the specified torque following the specified tightening sequence. Refer to the appropriate chapter for torque specifications. If torque specifications are not in the appropriate chapter, see the Standard Torque Table. For each fastener, first loosen it by 1/2 turn, then tighten it.

★ If cotter pins are damaged, replace them with new ones.

Bolt, Nut and Fastener to be checked

- **Engine:**
 - Clutch Lever Pivot Nut
 - Engine Mounting Bolts and Nuts
 - Exhaust Pipe Manifold Holder Nuts
 - Muffler Body Mounting Bolts

- **Wheels:**
 - Front Axle
 - Front Axle Clamp Bolt
 - Rear Axle Nut
 - Rear Axle Nut Cotter Pin

- **Brakes:**
 - Brake Lever Pivot Nut
 - Brake Pedal Bolt
 - Brake Rod Joint Cotter Pin
 - Caliper Mounting Bolts
 - Front Master Cylinder Clamp Bolts
 - Rear Master Cylinder Mounting Bolts

- **Suspension:**
 - Front Fork Clamp Bolts
 - Rear Shock Absorber Bolt and Nut
 - Swingarm Pivot Shaft Nut

- **Steering:**
 - Steering Stem Head Bolt
 - Handlebar Holder Bolts

- **Others:**
 - Footpeg Stay Bolts
 - Front Fender Bolts
 - Sidestand Bolt
Periodic Maintenance Procedures

Replacement Parts

Air Cleaner Element Replacement
• Refer to the Air Cleaner Element Cleaning.

Engine Oil Change
• Situate the motorcycle so that it is vertical after warming up the engine.
• Unscrew the oil filler plug [A].
• Place on oil pan beneath the engine.

• Remove the engine oil drain bolt [A] to drain the oil.
 ◦ The oil in the oil filter can be drained by removing the filter (see Oil Filter Replacement).
 ▲ Replace the drain bolt gasket [B] with a new one.
• Tighten the drain bolt.
 Torque - Engine Oil Drain Bolt: 20 N·m (2.0 kgf·m, 15 ft·lb)
• Pour in the specified type and amount of oil.

Recommended Engine Oil
Type: API SE, SF or SG
API SH, SJ or SL with JASO MA
Viscosity: SAE 10W-40
Capacity: 1.7 L (1.8 US qt) (when filter is not removed)
 1.9 L (2.0 US qt) (when filter is removed)
 2.4 L (2.5 US qt) (when engine is completely dry)

NOTE
◦ Although 10W-40 engine oil is the recommended oil for most conditions, the oil viscosity may need to be changed to accommodate atmospheric conditions in your riding area.
• Check the oil level (see Oil Level Inspection in the Engine Lubrication System chapter).
2-46 PERIODIC MAINTENANCE

Periodic Maintenance Procedures

Oil Filter Replacement
- Drain the engine oil (see Engine Oil Change).
- Remove the oil filter [A] with the oil filter wrench [B].

 Special Tool - Oil Filter Wrench: 57001-1249

- Replace the filter with a new one.
- Apply engine oil to the gasket [A] before installation.
- Tighten the filter with the oil filter wrench.

 Torque - Oil Filter: 17.2 N·m (1.75 kgf·m, 13 ft·lb)

NOTE
- Hand tightening of the oil filter cannot be allowed since it does not reach to this tightening torque.

- Pour in the specified type and amount of oil (see Engine Oil Change).

Fuel Hose Replacement

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>When removing and installing the fuel hose joint, do not apply strong force to the outlet pipe on the fuel pump and delivery pipe on the throttle body assy. The pipes made from resin could be damaged.</td>
</tr>
</tbody>
</table>

- Remove the fuel tank (see Fuel Tank Removal in the Fuel System (DFI) chapter).
- Be sure to place a piece of cloth [A] around the fuel hose joint.
- Insert a minus screwdriver [B] into the slit [C] on the joint lock.

- Turn [A] the driver to disconnect the joint lock [B].
- Pull [C] the fuel hose joint [D] out of the delivery pipe.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be prepared for fuel spillage; any spilled fuel must be completely wiped up immediately. When the fuel hose is disconnected, fuel spills out from the hose and the pipe. Cover the hose connection with a clean shop towel to prevent fuel spillage.</td>
</tr>
</tbody>
</table>

http://mototh.com
Periodic Maintenance Procedures

- Install the new fuel hose.
- Insert [A] the fuel hose joint [B] straight onto the delivery pipe until the hose joint clicks.
- Push [C] the joint lock [D].

- Push and pull [A] the fuel hose joint [B] back and forth more than two times and make sure it is locked and doesn’t come off.

WARNING

Make sure the fuel hose joint is installed correctly on the delivery pipe or the fuel could leak.

★ If it comes off, reinstall the hose joint.
- Run the fuel hose correctly (see Cable, Wire, and Hose Routing section in the Appendix chapter).
- Install the removed parts (see appropriate chapters).
- Start the engine and check the fuel hose for leaks.

Coolant Change

WARNING

To avoid burns, do not remove the radiator cap or try to change the coolant when the engine is still hot. Wait until it cools down. Coolant on tires will make them slippery and can cause an accident and injury. Immediately wipe up or wash away any coolant that spills on the frame, engine, or other painted parts. Since coolant is harmful to the human body, do not use for drinking.

- Remove:
 Right Center Fairing (see Center Fairing Removal in the Frame chapter)
 Lower Fairing (see Lower Fairing Removal in the Frame chapter)
- Remove:
 Reserve Tank Bolts [A]
 Reserve Tank [B]
Periodic Maintenance Procedures

- Put [A] the projection [B] on the reserve tank into the hole [C] on the frame bracket, and place the reserve tank on the right side of frame.

- Place a container under the water pump drain bolt [A], then remove the drain bolt.

- Remove the radiator cap [A] in two steps. First turn the cap counterclockwise to the first stop. Then push and turn it further in the same direction and remove the cap. The coolant will drain from the radiator and engine.

- Turn over [A] the reserve tank, remove the cap, and pour the coolant into a suitable container. Place the reserve tank on the right side of frame. Tighten the drain bolt with the gasket. Replace the drain bolt gasket with a new one.

Torque - Water Pump Drain Bolt: 7.0 N·m (0.70 kgf·m, 92 in·lb)
Periodic Maintenance Procedures

- When filling the coolant, choose a suitable mixture ratio by referring to the coolant manufacturer’s directions.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft or distilled water must be used with the antifreeze in the cooling system. If hard water is used in the system, it causes scales accumulation in the water passages, and considerably reduces the efficiency of the cooling system.</td>
</tr>
</tbody>
</table>

Water and Coolant Mixture Ratio (Recommended)

- Soft Water: 50%
- Coolant: 50%
- Freezing Point: –35°C (~31°F)
- Total Amount: 1.2 L (1.3 US qt)

- Fill the radiator up to the filler neck [A] with coolant.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pour in the coolant slowly so that it can expel the air from the engine and radiator.</td>
</tr>
</tbody>
</table>

- Check the cooling system for leaks.
- Tap the radiator hoses to force any air bubbles caught inside.
- Fill the radiator up to the filler neck with coolant.

- Temporarily install the reserve tank to the frame with two mounting bolts.
- Fill the reserve tank up to the “F” (full) level line [A] with coolant and install the cap [B].
- Start the engine, warm it up thoroughly until the radiator fan turns on and then stop the engine.
- Check the coolant level in the reserve tank after the engine cools down.
- If the coolant level is lower than the “L” level line, add coolant to the “F” level line.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not add more coolant above the “F” level line.</td>
</tr>
</tbody>
</table>
Radiator Hose and O-ring Replacement

- Drain the coolant (see Coolant Change in the Periodic Maintenance chapter).
- Remove:
 - Thermostat Housing [A] (see Water Pump Removal in the Cooling System chapter)
 - Water Pump Cover [B] (see Water Pump Removal in the Cooling System chapter)
 - Hoses [C]
 - O-rings [D]
- Apply grease to the new O-rings and install them.
- Install the new hoses and tighten the clamps securely.
- Fill the coolant (see Coolant Change in the Periodic Maintenance chapter).
- Check the cooling system for leaks.
Periodic Maintenance Procedures

Brake Hose and Pipe Replacement

CAUTION

Brake fluid quickly ruins painted plastic surfaces; any spilled fluid should be completely washed away immediately.

- Remove the banjo bolts [A].
- When removing the brake hose, take care not to spill the brake fluid on the painted or plastic parts.
- When removing the brake hoses [B], temporarily secure the end of the brake hose to some high place to keep fluid loss to a minimum.
- Immediately wash away any brake fluid that spills.
- There are washers on each side of the brake hose fitting. Replace them with new ones when installing.
- Tighten:
 - Torque - Brake Hose Banjo Bolts: 25 N·m (2.5 kgf·m, 18 ft·lb)

- When installing the hoses, avoid sharp bending, kinking, flattening or twisting, and route the hoses according to Cable, Wire, and Hose Routing section in the Appendix chapter.
- Fill the brake line after installing the brake hose (see Brake Fluid Change).

Brake Fluid Change

NOTE

- The procedure to change the front brake fluid is as follows. Changing the rear brake fluid is the same as for the front brake.
2-52 PERIODIC MAINTENANCE

Periodic Maintenance Procedures

- Level the brake fluid reservoir.
- Remove the reservoir cap and diaphragm.
- Remove the rubber cap from the bleed valve [A] on the caliper.
- Attach a clear plastic hose [B] to the bleed valve, and run the other end of the hose into a container.
- Fill the reservoir with fresh specified brake fluid.

- Change the brake fluid.
 ○ Repeat this operation until fresh brake fluid comes out from the plastic hose or the color of the fluid changes.
 1. Open the bleed valve [A].
 2. Apply the brake and hold it [B].
 3. Close the bleed valve [C].
 4. Release the brake [D].

 NOTE
 ○ The fluid level must be checked often during the changing operation and replenished with fresh brake fluid. If the fluid in the reservoir runs out any time during the changing operation, the brakes will need to be bled since air will have entered the brake line.
 ○ Front Brake: Repeat the above steps for the other caliper.

- Remove the clear plastic hose.
- Install the diaphragm and reservoir cap.
- Tighten:
 Torque - Front Brake Reservoir Cap Screws: 1.0 N·m (0.10 kgf·m, 9 in·lb)

- Follow the procedure below to install the rear brake fluid reservoir cap correctly.
 ○ First, tighten the rear brake fluid reservoir cap [B] clockwise [C] by hand until slight resistance is felt indicating that the cap is seated on the reservoir body, then tighten the cap an additional 1/6 turn [D] while holding the brake fluid reservoir body [A].

- Tighten the bleed valve, and install the rubber cap.
 Torque - Bleed Valve: 7.8 N·m (0.80 kgf·m, 69 in·lb)

- After changing the fluid, check the brake for good braking power, no brake drag, and no fluid leakage.
- If necessary, bleed the air from the lines.
Periodic Maintenance Procedures

Master Cylinder Rubber Parts Replacement

Front Master Cylinder Disassembly

- Remove the front master cylinder (see Front Master Cylinder Removal in the Brakes chapter).
- Remove the reservoir cap and diaphragm, and pour the brake fluid into a container.
- Unscrew the locknut and pivot bolt, and remove the brake lever.
- Pull the dust cover [A] out of place, and remove the circlip [B].

Special Tool - Inside Circlip Pliers: 57001-143

- Pull out the piston [C], secondary cup [D], primary cup [E], and return spring [F].

CAUTION
Do not remove the secondary cup from the piston since removal will damage it.

Rear Master Cylinder Disassembly

NOTE
Do not remove the push rod clevis for master cylinder disassembly since removal requires brake position adjustment.

- Remove the rear master cylinder (see Rear Master Cylinder Removal in the Brakes chapter).
- Slide the dust cover on the push rod out of place, and remove the circlip.

Special Tool - Inside Circlip Pliers: 57001-143

- Pull out the push rod with the piston stop.
- Take off the piston [A], secondary cup [B], primary cup [C] and return spring [D].

CAUTION
Do not remove the secondary cup from the piston since removal will damage it.

Master Cylinder Assembly

- Before assembly, clean all parts including the master cylinder with brake fluid or alcohol.

CAUTION
Except for the disc pads and disc, use only disc brake fluid, isopropyl alcohol, or ethyl alcohol for cleaning brake parts. Do not use any other fluid for cleaning these parts. Gasoline, engine oil, or any other petroleum distillate will cause deterioration of the rubber parts. Oil spilled on any part will be difficult to wash off completely, and will eventually deteriorate the rubber used in the disc brake.
2-54 PERIODIC MAINTENANCE

Periodic Maintenance Procedures

- Apply brake fluid to the new parts and to the inner wall of the cylinder.
- Take care not to scratch the piston or the inner wall of the cylinder.
- Tighten the brake lever pivot bolt and locknut.
- Apply silicone grease.

 Brake Lever Pivot Bolt

- Tighten:

 Torque - Brake Lever Pivot Bolt: 1.0 N·m (0.10 kgf·m, 9 in·lb)

 Brake Lever Pivot Bolt Locknut: 5.9 N·m (0.60 kgf·m, 52 in·lb)

Caliper Rubber Parts Replacement

Front Caliper Disassembly

- Remove:

 - Front Caliper (see Front Caliper Removal in the Brakes chapter)

 - Brake Pads (see Front Brake Pad Removal in the Brakes chapter)

- Using compressed air, remove the pistons.

 ○ Cover the piston area with a clean, thick cloth [A].

 ○ Blow compressed air [B] into the hole for the banjo bolt to remove the piston.

 WARNING

 To avoid serious injury, never place your fingers or palm in front of the piston. If you apply compressed air into the caliper, the piston may crush your hand or fingers.

 ○ Pull out the pistons by hand.

 - Remove the dust seals [A] and fluid seals [B].

 - Remove the bleed valve [C] and rubber cap [D].

 NOTE

 ○ If compressed air is not available, with the brake hose still attached, apply the brake lever to remove the piston. The remaining process is as described above.

Front Caliper Assembly

- Clean the caliper parts except for the pads.

 CAUTION

 For cleaning the parts, use only disc brake fluid, isopropyl alcohol, or ethyl alcohol.

 - Install the bleed valve and rubber cap.

 Torque - Bleed Valve: 7.8 N·m (0.80 kgf·m, 69 in·lb)
Periodic Maintenance Procedures

- Replace the fluid seals [A] with new ones.
 ○ Apply brake fluid to the fluid seals, and install them into the cylinders by hand.
- Replace the dust seals [B] with new ones if they are damaged.
 ○ Apply brake fluid to the dust seals, and install them into the cylinders by hand.
- Apply brake fluid to the outside of the pistons, and push them into each cylinder by hand.
- Check the shaft rubber friction boot [A] and the dust cover [B] replace them with new ones if they are damaged.
- Apply a thin coat of PBC (Poly Butyl Cuprysil) grease to the caliper holder shafts [C] and holder holes [D] (PBC is a special high-temperature, water-resistance grease).

- Install the anti-rattle spring [A].
- Install the pads (see Front Brake Pad Installation in the Brakes chapter).
- Wipe up any spilled brake fluid on the caliper with wet cloth.

Rear Caliper Disassembly

- Remove the rear caliper (see Rear Caliper Removal in the Brakes chapter).
- Remove the pads and anti-rattle spring (see Rear Brake Pad Removal in the Brakes chapter).
- Using compressed air, remove the piston.
 ○ Cover the piston area with a clean, thick cloth [B].
 ○ Blow compressed air [A] into the hole for the banjo bolt to remove the piston.

WARNING

To avoid serious injury, never place your fingers or palm inside the caliper opening. If you apply compressed air into the caliper, the piston may crush your hand or fingers.

- Remove the dust seal and fluid seal.
- Remove the bleed valve and rubber cap.

NOTE

- If compressed air is not available, with the brake hose still attached, apply the brake pedal to remove the piston. The remaining process is as described above.
2-56 PERIODIC MAINTENANCE

Periodic Maintenance Procedures

Rear Caliper Assembly
• Clean the caliper parts except for the pads.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>For cleaning of the parts, use only disc brake fluid, isopropyl alcohol, or ethyl alcohol.</td>
</tr>
</tbody>
</table>

- Install the bleed valve and rubber cap.
 Torque - Bleed Valve: 7.8 N·m (0.80 kgf·m, 69 in·lb)
- Replace the fluid seal [A] with a new one.
 ○ Apply brake fluid to the fluid seal, and install it into the cylinder by hand.
- Replace the dust seal [B] with a new one if it is damaged.
 ○ Apply brake fluid to the dust seal, and install it into the cylinder by hand.

- Apply brake fluid to the outside of the piston, and push it into the cylinder by hand.
- Replace the shaft rubber friction boot [A] and dust cover [B] if they are damaged.
- Apply a thin coat of PBC (Poly Butyl Cuprysil) grease to the caliper holder shafts [C] and holder holes [D] (PBC is a special high-temperature, water-resistance grease).

- Install the anti-rattle spring [A] in the caliper as shown.
- Install the pads (see Rear Brake Pad Installation in the Brakes chapter).
- Wipe up any spilled brake fluid on the caliper with wet cloth.

Spark Plug Replacement
• Remove:
 Stick Coils (see Stick Coil (Ignition Coil together with Spark Plug Cap) Removal in the Electrical System chapter)
• Remove the spark plugs using the 16 mm plug wrench [A].
 Owner’s Tool - Spark Plug Wrench, 16 mm: 92110-1132
Periodic Maintenance Procedures

- Insert the spark plug vertically into the plug hole with the spark plug installed in the plug wrench [A].
 Owner’s Tool - Spark Plug Wrench, 16 mm: 92110-1132
- Tighten:
 Torque - Spark Plugs: 15 N·m (1.5 kgf·m, 11 ft·lb)
- Install:
 Stick Coils (see Stick Coil (Ignition Coil together with Spark Plug Cap) Installation in the Electrical System chapter)
Fuel System (DFI)

Table of Contents

Exploded View ... 3-4
DFI System ... 3-8
DFI System .. 3-10
DFI Parts Location ... 3-13
Specifications ... 3-14
Special Tools and Sealant ... 3-16
DFI Servicing Precautions ... 3-18
 DFI Servicing Precautions .. 3-18
Troubleshooting the DFI System ... 3-20
 Outline ... 3-20
 Outline... 3-20
 Inquiries to Rider ... 3-24
 Inquiries to Rider ... 3-24
DFI System Troubleshooting Guide .. 3-27
Self-Diagnosis .. 3-35
 Self-diagnosis Outline .. 3-35
 Self-diagnosis Procedures .. 3-35
 Self-diagnosis Procedures .. 3-35
Service Code Clearing Procedures .. 3-36
 Service Code Clearing Procedures .. 3-36
How to Read Service Codes ... 3-38
 How to Read Service Codes .. 3-38
How to Erase Service Codes ... 3-38
 How to Erase Service Codes .. 3-38
Service Code Table ... 3-39
 Service Code Table ... 3-39
Backups ... 3-40
 Backups ... 3-40
Main Throttle Sensor (Service Code 11) ... 3-42
 Main Throttle Sensor Removal/Adjustment ... 3-42
 Input Voltage Inspection .. 3-42
 Output Voltage Inspection ... 3-43
 Resistance Inspection ... 3-44
Inlet Air Pressure Sensor (Service Code 12) ... 3-45
 Removal .. 3-45
 Installation .. 3-45
 Input Voltage Inspection .. 3-45
 Output Voltage Inspection ... 3-46
Inlet Air Temperature Sensor (Service Code 13) .. 3-50
 Removal/Installation ... 3-50
 Output Voltage Inspection ... 3-50
 Sensor Resistance Inspection ... 3-51
Water Temperature Sensor (Service Code 14) ... 3-52
 Water Temperature Sensor Removal/Installation ... 3-52
 Water Temperature Sensor Output Voltage Inspection .. 3-52
3-2 FUEL SYSTEM (DFI)

Sensor Resistance Inspection ... 3-53
Crankshaft Sensor (Service Code 21).. 3-54
Crankshaft Sensor Removal/Installation .. 3-54
Crankshaft Sensor Inspection ... 3-54
Speed Sensor (Service Code 24, 25).. 3-55
Speed Sensor Removal/Installation ... 3-55
Speed Sensor Inspection ... 3-55
Subthrottle Sensor (Service Code 32)... 3-60
Subthrottle Sensor Removal/Adjustment ... 3-60
Subthrottle Sensor Input Voltage Inspection .. 3-60
Subthrottle Sensor Output Voltage Inspection 3-61
Subthrottle Sensor Resistance Inspection ... 3-62
Stick Coils (#1, #2: Service Code 51, 52) ... 3-65
Stick Coil Removal/Installation ... 3-65
Stick Coil Input Voltage Inspection ... 3-65
Vehicle-down Sensor (Service Code 31) .. 3-57
Vehicle-down Sensor Removal ... 3-57
Vehicle-down Sensor Installation .. 3-57
Vehicle-down Sensor Inspection .. 3-57
Radiator Fan Relay (Service Code 56)... 3-67
Radiator Fan Relay Removal/Installation .. 3-67
Radiator Fan Relay Inspection ... 3-67
Radiator Fan Relay Installation .. 3-67
Oxygen Sensor-not activated (Service Code 33) - Europe Model 3-63
Radiator Fan Relay Inspection ... 3-63
Radiator Fan Relay Removal/Installation .. 3-63
Radiator Fan Relay Inspection ... 3-63
Stick Coil Input Voltage Inspection ... 3-63
Speed Sensor (Service Code 24, 25) .. 3-55
Speed Sensor Removal/Installation ... 3-55
Speed Sensor Inspection ... 3-55
Speed Sensor Input Voltage Inspection ... 3-55
Speed Sensor Output Voltage Inspection ... 3-55
Vehicle-down Sensor (Service Code 31) .. 3-57
Vehicle-down Sensor Removal ... 3-57
Vehicle-down Sensor Installation .. 3-57
Vehicle-down Sensor Inspection .. 3-57
Oxygen Sensor Heater (Service Code 67) - Europe Model 3-71
Oxygen Sensor Heater Removal/Installation .. 3-71
Oxygen Sensor Heater Inspection ... 3-71
Oxygen Sensor Heater Removal/Installation .. 3-71
Oxygen Sensor Heater Inspection ... 3-71
Pressure Regulator Removal ... 3-86
Fuel Line... 3-80
Fuel Flow Rate Inspection .. 3-82
Fuel Pump ... 3-84
Fuel Flow Rate Inspection .. 3-82
Fuel Pump Operation Inspection .. 3-85
Fuel Pump Pressure Inspection .. 3-85
Fuel Pump Operating Voltage Inspection ... 3-85
ECU .. 3-77
ECU Removal ... 3-77
ECU Installation ... 3-77
ECU Power Supply Inspection ... 3-78
Fuel Pressure Inspection .. 3-80
Fuel Pressure Inspection .. 3-80
Fuel Pump ... 3-84
Fuel Pump Removal ... 3-84
Fuel Pump Installation .. 3-84
Fuel Pump Operation Inspection .. 3-85
Fuel Pump Pressure Inspection .. 3-85
Pressure Regulator Removal ... 3-86

http://mototh.com
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump Screen, Fuel Filter Cleaning</td>
<td>3-86</td>
</tr>
<tr>
<td>Fuel Injectors</td>
<td>3-88</td>
</tr>
<tr>
<td>Removal/Installation</td>
<td>3-88</td>
</tr>
<tr>
<td>Audible Inspection</td>
<td>3-88</td>
</tr>
<tr>
<td>Fuel Injector Power Source Voltage Inspection</td>
<td>3-88</td>
</tr>
<tr>
<td>Fuel Injector Output Voltage Inspection</td>
<td>3-89</td>
</tr>
<tr>
<td>Injector Signal Test</td>
<td>3-89</td>
</tr>
<tr>
<td>Injector Resistance Inspection</td>
<td>3-90</td>
</tr>
<tr>
<td>Injector Unit Test</td>
<td>3-91</td>
</tr>
<tr>
<td>Injector Fuel Line Inspection</td>
<td>3-91</td>
</tr>
<tr>
<td>Throttle Grip and Cables</td>
<td>3-93</td>
</tr>
<tr>
<td>Throttle Grip Free Play Inspection</td>
<td>3-93</td>
</tr>
<tr>
<td>Throttle Grip Free Play Adjustment</td>
<td>3-93</td>
</tr>
<tr>
<td>Throttle Cable Installation</td>
<td>3-93</td>
</tr>
<tr>
<td>Throttle Cable Lubrication</td>
<td>3-93</td>
</tr>
<tr>
<td>Throttle Body Assy</td>
<td>3-94</td>
</tr>
<tr>
<td>Idle Speed Inspection</td>
<td>3-94</td>
</tr>
<tr>
<td>Engine Vacuum Synchronization Inspection/Adjustment</td>
<td>3-94</td>
</tr>
<tr>
<td>High Altitude Performance Adjustment</td>
<td>3-94</td>
</tr>
<tr>
<td>Throttle Body Assy Removal</td>
<td>3-94</td>
</tr>
<tr>
<td>Throttle Body Assy Installation</td>
<td>3-95</td>
</tr>
<tr>
<td>Throttle Body Assy Disassembly</td>
<td>3-96</td>
</tr>
<tr>
<td>Throttle Body Assy Assembly</td>
<td>3-97</td>
</tr>
<tr>
<td>Air Cleaner</td>
<td>3-98</td>
</tr>
<tr>
<td>Air Cleaner Element Removal/Installation</td>
<td>3-98</td>
</tr>
<tr>
<td>Air Cleaner Element Inspection</td>
<td>3-98</td>
</tr>
<tr>
<td>Air Cleaner Oil Draining</td>
<td>3-98</td>
</tr>
<tr>
<td>Air Cleaner Housing Removal</td>
<td>3-98</td>
</tr>
<tr>
<td>Air Cleaner Housing Installation</td>
<td>3-99</td>
</tr>
<tr>
<td>Fuel Tank</td>
<td>3-100</td>
</tr>
<tr>
<td>Fuel Tank Removal</td>
<td>3-100</td>
</tr>
<tr>
<td>Fuel Tank Installation</td>
<td>3-101</td>
</tr>
<tr>
<td>Fuel Tank and Cap Inspection</td>
<td>3-102</td>
</tr>
<tr>
<td>Fuel Tank Cleaning</td>
<td>3-103</td>
</tr>
</tbody>
</table>
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque (N·m)</th>
<th>Torque (kgf·m)</th>
<th>Torque (ft·lb)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fuel Pump Bolts</td>
<td>9.8</td>
<td>1.0</td>
<td>87 in·lb</td>
<td>L, S</td>
</tr>
</tbody>
</table>

2. FI Indicator LED Light
3. Throttle Cable (Accelerator)
4. Throttle Cable (Decelerator)
5. Throttle Body Assy
6. Injectors

CL: Apply cable lubricant.
EO: Apply engine oil.
G: Apply grease.
L: Apply a non-permanent locking agent.
R: Replacement Parts
S: Follow the specified tightening sequence.
<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>1</td>
<td>Water Temperature Sensor</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>Speed Sensor Bolt</td>
<td>7.8</td>
<td>0.80</td>
</tr>
<tr>
<td>3</td>
<td>Oxygen Sensor (Europe Model)</td>
<td>44.1</td>
<td>4.50</td>
</tr>
</tbody>
</table>

4. Inlet Air Pressure Sensor
5. Air Switching Valve
6. Inlet Air Temperature Sensor
7. Crankshaft Sensor
8. Sealed Battery
9. Relay Box
10. Stick Coil
11. Vehicle-down Sensor
12. ECU (Electronic Control Unit)

L: Apply a non-permanent locking agent.
R: Replacement Parts
SS: Apply silicone sealant.
DFI System

1. Ignition Switch
2. Starter Lockout Switch
3. Starter Relay
4. Tachometer
5. FI Indicator Light (LED)
6. Inlet Air Pressure Sensor
7. Spark Plug
8. Crankshaft Sensor
9. Injector
10. Main Throttle Sensor
11. Delivery Pipe
12. Subthrottle Sensor
13. Subthrottle Valve
14. Main Throttle Valve
15. Subthrottle Valve Actuator
16. Fuel Pump
17. Pressure Regulator
18. Fuel Tank
19. Air Cleaner Element
20. Air Switching Valve
21. Inlet Air Temperature Sensor
22. Air Cleaner Housing
23. Neutral Switch
24. Speed Sensor
25. Vehicle-down Sensor
26. Oxygen Sensor (Europe Model)
27. ECU (Electronic Control Unit)
28. Sealed Battery
29. Air Flow
30. Fuel Flow
31. Water Temperature Sensor
3-10 FUEL SYSTEM (DFI)

DFI System

DFI System Wiring Diagram
DFI System

<table>
<thead>
<tr>
<th>Part Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Oxygen Sensor (Europe Model)</td>
</tr>
<tr>
<td>2. Crankshaft Sensor</td>
</tr>
<tr>
<td>3. Inlet Air Temperature Sensor</td>
</tr>
<tr>
<td>4. Water Temperature Sensor</td>
</tr>
<tr>
<td>5. Water-proof Joint E</td>
</tr>
<tr>
<td>6. Injectors</td>
</tr>
<tr>
<td>7. Vehicle-down Sensor</td>
</tr>
<tr>
<td>8. Water-proof Joint D</td>
</tr>
<tr>
<td>9. Inlet Air Pressure Sensor</td>
</tr>
<tr>
<td>10. Main Throttle Sensor</td>
</tr>
<tr>
<td>11. Subthrottle Sensor</td>
</tr>
<tr>
<td>12. Subthrottle Valve Actuator</td>
</tr>
<tr>
<td>13. Speed Sensor</td>
</tr>
<tr>
<td>14. Air Switching Valve</td>
</tr>
<tr>
<td>15. Water-proof Joint C</td>
</tr>
<tr>
<td>16. Stick Coil</td>
</tr>
<tr>
<td>17. Fan Motor</td>
</tr>
<tr>
<td>18. Engine Stop Switch</td>
</tr>
<tr>
<td>19. Ignition Switch</td>
</tr>
<tr>
<td>20. FI Indicator Light (LED)</td>
</tr>
<tr>
<td>21. Water Temperature Gauge</td>
</tr>
<tr>
<td>22. Tachometer</td>
</tr>
<tr>
<td>23. Speedometer</td>
</tr>
<tr>
<td>24. Water-proof Joint A</td>
</tr>
<tr>
<td>25. Water-proof Joint B</td>
</tr>
<tr>
<td>26. Oxygen Sensor Heater Fuse 10 A</td>
</tr>
<tr>
<td>27. Radiator Fan Fuse 15 A</td>
</tr>
<tr>
<td>28. ECU Fuse 15 A</td>
</tr>
<tr>
<td>29. Ignition Fuse 10 A</td>
</tr>
<tr>
<td>30. Radiator Fan Relay</td>
</tr>
<tr>
<td>31. ECU Main Relay</td>
</tr>
<tr>
<td>32. Fuel Pump Relay</td>
</tr>
<tr>
<td>33. Relay Box</td>
</tr>
<tr>
<td>34. Main Fuse 30 A</td>
</tr>
<tr>
<td>35. Battery</td>
</tr>
<tr>
<td>36. Frame Ground</td>
</tr>
<tr>
<td>37. Fuel Pump</td>
</tr>
<tr>
<td>38. Diagnosis Connector</td>
</tr>
<tr>
<td>39. Self-diagnosis Terminal</td>
</tr>
<tr>
<td>40. Joint Connector</td>
</tr>
<tr>
<td>41. ECU</td>
</tr>
</tbody>
</table>
Terminal Names

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Subthrottle Valve Actuator Drive Signal 2</td>
</tr>
<tr>
<td>2.</td>
<td>Subthrottle Valve Actuator Drive Signal 1</td>
</tr>
<tr>
<td>3.</td>
<td>Water Temperature Warning Light Signal</td>
</tr>
<tr>
<td>4.</td>
<td>Unused</td>
</tr>
<tr>
<td>5.</td>
<td>Oxygen Sensor Signal</td>
</tr>
<tr>
<td>6.</td>
<td>Speed Sensor Signal</td>
</tr>
<tr>
<td>7.</td>
<td>Main Throttle Sensor Signal</td>
</tr>
<tr>
<td>8.</td>
<td>Inlet Air Pressure Sensor Signal</td>
</tr>
<tr>
<td>9.</td>
<td>Unused</td>
</tr>
<tr>
<td>10.</td>
<td>Power Supply to Sensors</td>
</tr>
<tr>
<td>11.</td>
<td>Vehicle-down Sensor Signal</td>
</tr>
<tr>
<td>12.</td>
<td>Neutral Switch Signal</td>
</tr>
<tr>
<td>13.</td>
<td>Crankshaft Sensor (+) Signal</td>
</tr>
<tr>
<td>14.</td>
<td>Unused</td>
</tr>
<tr>
<td>15.</td>
<td>Unused</td>
</tr>
<tr>
<td>16.</td>
<td>Power Supply to ECU (from ECU Main Relay)</td>
</tr>
<tr>
<td>17.</td>
<td>Power Supply to ECU (from Battery)</td>
</tr>
<tr>
<td>18.</td>
<td>Subthrottle Valve Actuator Drive Signal 4</td>
</tr>
<tr>
<td>19.</td>
<td>Subthrottle Valve Actuator Drive Signal 3</td>
</tr>
<tr>
<td>20.</td>
<td>Water Temperature Sensor Signal</td>
</tr>
<tr>
<td>21.</td>
<td>Unused</td>
</tr>
<tr>
<td>22.</td>
<td>Self-diagnosis Terminal</td>
</tr>
<tr>
<td>23.</td>
<td>Unused</td>
</tr>
<tr>
<td>24.</td>
<td>Subthrottle Sensor Signal</td>
</tr>
<tr>
<td>25.</td>
<td>Unused</td>
</tr>
<tr>
<td>26.</td>
<td>Inlet Air Temperature Sensor Signal</td>
</tr>
<tr>
<td>27.</td>
<td>Unused</td>
</tr>
<tr>
<td>28.</td>
<td>Ground to Sensors</td>
</tr>
<tr>
<td>29.</td>
<td>Oxygen Sensor Heater Signal</td>
</tr>
<tr>
<td>30.</td>
<td>Crankshaft Sensor (–) Signal</td>
</tr>
<tr>
<td>31.</td>
<td>Unused</td>
</tr>
<tr>
<td>32.</td>
<td>External Diagnosis System Signal</td>
</tr>
<tr>
<td>33.</td>
<td>Unused</td>
</tr>
<tr>
<td>34.</td>
<td>Ground to ECU</td>
</tr>
<tr>
<td>35.</td>
<td>Engine Stop Switch Signal</td>
</tr>
<tr>
<td>36.</td>
<td>Starter Lockout Switch Signal</td>
</tr>
<tr>
<td>37.</td>
<td>Starter Button Signal</td>
</tr>
<tr>
<td>38.</td>
<td>Unused</td>
</tr>
<tr>
<td>39.</td>
<td>Fuel Pump Relay Signal</td>
</tr>
<tr>
<td>40.</td>
<td>Air Switching Valve Signal</td>
</tr>
<tr>
<td>41.</td>
<td>Fuel Injector #2 Signal</td>
</tr>
<tr>
<td>42.</td>
<td>Fuel Injector #1 Signal</td>
</tr>
<tr>
<td>43.</td>
<td>Stick Coil #1 Signal</td>
</tr>
<tr>
<td>44.</td>
<td>Sidestand Switch Signal</td>
</tr>
<tr>
<td>45.</td>
<td>Radiator Fan Relay Signal</td>
</tr>
<tr>
<td>46.</td>
<td>External Communication Line (Mode Switch)</td>
</tr>
<tr>
<td>47.</td>
<td>Tachometer Signal</td>
</tr>
<tr>
<td>48.</td>
<td>FI Indicator LED Light</td>
</tr>
<tr>
<td>49.</td>
<td>–</td>
</tr>
<tr>
<td>50.</td>
<td>Ground for Fuel System</td>
</tr>
<tr>
<td>51.</td>
<td>Ground for ignition System</td>
</tr>
</tbody>
</table>
DFI Parts Location

1. FI Indicator Light LED (DFI)
2. Ignition Switch
3. Throttle Body Assy
4. Inlet Air Temperature Sensor
5. Injectors
6. Fuel Pump
7. Relay Box (ECU Main Relay, Fuel Pump Relay, Radiator Fan Relay)
8. Fuse Box (ECU Fuse 15 A, Oxygen Sensor Heater Fuse 10 A)
9. ECU
10. Sealed Battery
11. Oxygen Sensor
12. Speed Sensor
13. Neutral Switch
14. Water Temperature Sensor
15. Subthrottle Sensor
16. Main Throttle Sensor
17. Subthrottle Valve Actuator
18. Stick Coils
19. Inlet Air Pressure Sensor
20. Diagnosis Connector
21. Self-diagnosis Terminal
22. Air Switching Valve
23. Crankshaft Sensor
24. Vehicle-down Sensor
3-14 FUEL SYSTEM (DFI)

Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Fuel Injection System</td>
<td></td>
</tr>
<tr>
<td>Idle Speed</td>
<td>1,300 ±50 r/min (rpm)</td>
</tr>
<tr>
<td>Throttle Assy:</td>
<td>Two barrel type</td>
</tr>
<tr>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>Bore</td>
<td>φ38 mm (1.50 in.)</td>
</tr>
<tr>
<td>ECU (Electronic Control Unit):</td>
<td></td>
</tr>
<tr>
<td>Make</td>
<td>Denso</td>
</tr>
<tr>
<td>Type</td>
<td>Digital memory type, with built in IC igniter, sealed with resin</td>
</tr>
<tr>
<td>Usable Engine Speed</td>
<td>100 ~ 12,000 r/min (rpm)</td>
</tr>
<tr>
<td>Fuel Pressure (High Pressure Line):</td>
<td></td>
</tr>
<tr>
<td>Right after Ignition Switch ON</td>
<td>323 kPa (3.3 kgf/cm², 47 psi) with fuel pump running</td>
</tr>
<tr>
<td>After 3 Seconds from Ignition Switch ON</td>
<td>265 kPa (2.7 kgf/cm², 38 psi) with fuel pump stopped</td>
</tr>
<tr>
<td>With Engine Idling</td>
<td>333 kPa (3.4 kgf/cm², 48 psi) with fuel pump running</td>
</tr>
<tr>
<td>Fuel Pump:</td>
<td>In-tank friction pump</td>
</tr>
<tr>
<td>Type</td>
<td></td>
</tr>
<tr>
<td>Discharge</td>
<td>60 mL or more for 3 seconds</td>
</tr>
<tr>
<td>Fuel Injectors:</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>INP-287</td>
</tr>
<tr>
<td>Nozzle Type</td>
<td>One spray type with 12 holes</td>
</tr>
<tr>
<td>Resistance</td>
<td>about 11.7 ~ 12.3 Ω at 20°C (68°F)</td>
</tr>
<tr>
<td>Main Throttle Sensor:</td>
<td>Non-adjustable and non-removable</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>4.75 ~ 5.25 V DC between BL and BR/BK leads</td>
</tr>
<tr>
<td>Output Voltage at Idle Throttle Opening</td>
<td>1.073 ~ 1.077 V DC between Y/W and BR/BK leads</td>
</tr>
<tr>
<td>Output Voltage at Full Throttle Opening</td>
<td>4.29 ~ 4.49 V DC between Y/W and BR/BK leads</td>
</tr>
<tr>
<td>Resistance</td>
<td>4 ~ 6 kΩ</td>
</tr>
<tr>
<td>Inlet Air Pressure Sensor:</td>
<td></td>
</tr>
<tr>
<td>Input Voltage</td>
<td>4.75 ~ 5.25 V DC between BL and BR/BK leads</td>
</tr>
<tr>
<td>Output Voltage</td>
<td>3.80 ~ 4.20 V DC at standard atmospheric pressure (see this text for details)</td>
</tr>
<tr>
<td>Inlet Air Temperature Sensor:</td>
<td></td>
</tr>
<tr>
<td>Resistance</td>
<td>5.4 ~ 6.6 kΩ at 0°C (32°F)</td>
</tr>
<tr>
<td>Output Voltage at ECU</td>
<td>0.29 ~ 0.39 kΩ at 80°C (176°F)</td>
</tr>
<tr>
<td>Water Temperature Sensor:</td>
<td></td>
</tr>
<tr>
<td>Resistance</td>
<td>see Electrical System chapter</td>
</tr>
<tr>
<td>Output Voltage at ECU</td>
<td>about 2.25 ~ 2.50 V @20°C (68°F)</td>
</tr>
<tr>
<td>Speed Sensor:</td>
<td></td>
</tr>
<tr>
<td>Input Voltage at Sensor</td>
<td>about 9 ~ 11 V DC at Ignition Switch ON</td>
</tr>
<tr>
<td>Output Voltage at Sensor</td>
<td>about 0.05 ~ 0.07 V DC at Ignition Switch ON and 0 km/h</td>
</tr>
<tr>
<td>Vehicle-down Sensor:</td>
<td>Magnetic flux detection method</td>
</tr>
<tr>
<td>Detection Method</td>
<td>more than 60 ~ 70° for each bank</td>
</tr>
</tbody>
</table>

http://mototh.com
Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage</td>
<td>with the sensor tilted 60° ~ 70° or more: 0.65 ~ 1.35 V</td>
</tr>
<tr>
<td></td>
<td>with sensor arrow mark pointed up: 3.55 ~ 4.45 V</td>
</tr>
<tr>
<td>Subthrottle Sensor:</td>
<td>Non-adjustable and non-removal</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>4.75 ~ 5.25 V DC between BL and BR/BK leads</td>
</tr>
<tr>
<td>Output Voltage at Idle Throttle Opening</td>
<td>0.4 ~ 0.6 V DC between BL/W and BR/BK leads</td>
</tr>
<tr>
<td>Output Voltage at Full Throttle Opening</td>
<td>3.625 ~ 3.775 V DC between BL/W and BR/BK leads</td>
</tr>
<tr>
<td>Resistance</td>
<td>4 ~ 6 kΩ</td>
</tr>
<tr>
<td>Subthrottle Valve Actuator:</td>
<td></td>
</tr>
<tr>
<td>Resistance</td>
<td>about 5.5 ~ 7.5 Ω</td>
</tr>
<tr>
<td>Input Voltage</td>
<td>about 8.5 ~ 10.5 V DC</td>
</tr>
<tr>
<td>Oxygen Sensor (Europe Model):</td>
<td></td>
</tr>
<tr>
<td>Output Voltage (Rich)</td>
<td>0.7 V or more</td>
</tr>
<tr>
<td>Output Voltage (Lean)</td>
<td>0.2 V or less</td>
</tr>
<tr>
<td>Heater Resistance</td>
<td>11.7 ~ 14.5 Ω at 20°C (68°F)</td>
</tr>
<tr>
<td>Throttle Grip and Cables</td>
<td></td>
</tr>
<tr>
<td>Throttle Grip Free Play</td>
<td>2 ~ 3 mm (0.08 ~ 0.12 in.)</td>
</tr>
</tbody>
</table>

http://mototh.com
3-16 FUEL SYSTEM (DFI)

Special Tools and Sealant

Oil Pressure Gauge, 5 kgf/cm²:
57001-125

Needle Adapter Set:
57001-1457

Fork Oil Level Gauge:
57001-1290

Throttle Sensor Setting Adapter:
57001-1538

Hand Tester:
57001-1394

Sensor Harness Adapter:
57001-1561

Throttle Sensor Setting Adapter #1:
57001-1400

Fuel Pressure Gauge Adapter:
57001-1593

Peak Voltage Adapter:
57001-1415

Fuel Hose:
57001-1607
Special Tools and Sealant

Kawasaki Bond (Silicone Sealant):
56019-120
DFI Servicing Precautions

There are a number of important precautions that should be followed servicing the DFI system.

○ This DFI system is designed to be used with a 12 V sealed battery as its power source. Do not use any other battery except for a 12 V sealed battery as a power source.

○ Do not reverse the battery cable connections. This will damage the ECU.

○ To prevent damage to the DFI parts, do not disconnect the battery cables or any other electrical connections when the ignition switch is on or while the engine is running.

○ Take care not to short the leads that are directly connected to the battery positive (+) terminal to the chassis ground.

○ When charging, remove the battery from the motorcycle. This is to prevent ECU damage by excessive voltage.

○ Do not turn the ignition switch ON while any of the DFI electrical connectors are disconnected. The ECU memorizes service codes.

○ Do not spray water on the electrical parts, DFI parts, connectors, leads, and wiring.

○ Whenever the DFI electrical connections are to be disconnected, first turn off the ignition switch, and disconnect the battery (–) terminal. Do not pull the lead, only the connector. Conversely, make sure that all the DFI electrical connections are firmly reconnected before starting the engine.

○ Connect these connectors until they click [A]

○ If a transceiver is installed on the motorcycle, make sure that the operation of the DFI system is not influenced by electric wave radiated from the antenna. Check operation of the system with the engine at idle. Locate the antenna as far as possible away from the ECU.

○ When any fuel hose is disconnected, fuel may spout out by residual pressure in the fuel line. Cover the hose joint with a piece of clean cloth to prevent fuel spillage.

○ When any fuel hose is disconnected, do not turn on the ignition switch. Otherwise, the fuel pump will operate and fuel will spout from the fuel hose.

○ Do not operate the fuel pump if the pump is completely dry. This is to prevent pump seizure.

○ Before removing the fuel system parts, blow the outer surfaces of these parts clean with compressed air.

○ To prevent corrosion and deposits in the fuel system, do not add to fuel any fuel antifreeze chemicals.
DFI Servicing Precautions

To maintain the correct fuel/air mixture (F/A), there must be no inlet air leaks in the DFI system. Be sure to install the oil filler plug [A] after filling the engine oil.

Clutch Cover [B]

Torque - Oil Filler Plug: Hand-tighten

http://mototh.com
Troubleshooting the DFI System

Outline

When an abnormality in the system occurs, the FI indicator LED (Light Emitting Diode) light goes on to alert the rider on the meter panel. In addition, the condition of the problem is stored in the memory of the ECU (electronic control unit). With the engine stopped and turned in the self-diagnosis mode, the service code [A] is indicated by the number of times the FI indicator LED light blinks.

When due to a malfunction, the FI indicator LED light remains lit, ask the rider about the conditions [B] under which the problem occurred and try to determine the cause [C].

• First, conduct a self-diagnosis inspection and then a non-self-diagnosis inspection. The non-self-diagnosis items are not indicated by the FI indicator LED light. Don’t rely solely on the DFI self-diagnosis function, use common sense.

Even when the DFI system is operating normally, the FI indicator LED light [A] may light up under strong electrical interference. No repair needed. Turn the ignition switch OFF to stop the indicator light.

When the FI indicator LED light goes on and the motorcycle is brought in for repair, check the service codes.

When the repair has been done, the LED light doesn’t go on. But the service codes stored in memory are not erased to preserve the problem history, and the LED light can display the codes in the self-diagnosis mode. The problem history is referred when solving unstable problems.

When the motorcycle is down, the vehicle-down sensor is turned OFF and the ECU shuts off the fuel injectors and ignition system. The FI indicator LED light blinks but the service code cannot be displayed. The ignition switch is left ON. If the starter button is pushed, the electric starter turns but the engine doesn’t start. To start the engine again, raise the motorcycle, turn the ignition switch OFF, and then ON. The vehicle-down sensor is turned ON and the LED light goes OFF.
Troubleshooting the DFI System

○ The DFI part connectors [A] have seals [B], including the ECU.

• Join the connector and insert the needle adapters [C] inside the seals [B] from behind the connector until the adapter reaches the terminal.

Special Tool - Needle Adapter Set: 57001-1457

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insert the needle adapter straight along the terminal in the connector to prevent short-circuit between terminals.</td>
</tr>
</tbody>
</table>

• Make sure that measuring points are correct in the connector, noting the position of the lock [D] and the lead color before measurement. Do not reverse connections of the hand tester or a digital meter.

• Be careful not to short-circuit the leads of the DFI or electrical system parts by contact between adapters.

• Turn the ignition switch ON and measure the voltage with the connector joined.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect, reverse connection or short circuit by needle adapters could damage the DFI or electrical system parts.</td>
</tr>
</tbody>
</table>

○ After measurement, remove the needle adapters and apply silicone sealant to the seals [A] of the connector [B] for waterproofing.

Silicone Sealant (Kawasaki Bond: 56019-120) - Seals of Connector

• Always check battery condition before replacing the DFI parts. A fully charged battery is a must for conducting accurate tests of the DFI system.

• Trouble may involve one or in some cases all items. Never replace a defective part without determining what CAUSED the problem. If the problem was caused by some other item or items, they too must be repaired or replaced, or the new replacement part will soon fail again.

• Measure coil winding resistance when the DFI part is cold (at room temperature).

• Make sure all connectors in the circuit are clean and tight, and examine wires for signs of burning, fraying, short, etc. Deteriorated wires and bad connections can cause reappearance of problems and unstable operation of the DFI system.

★ If any wiring is deteriorated, replace the wiring.
Troubleshooting the DFI System

• Pull each connector [A] apart and inspect it for corrosion, dirt, and damage.
 ★ If the connector is corroded or dirty, clean it carefully. If it is damaged, replace it. Connect the connectors securely.

• Check the wiring for continuity.
 ○ Use the wiring diagram to find the ends of the lead which is suspected of being a problem.
 ○ Connect the hand tester between the ends of the leads.
 ○ Set the tester to the × 1 Ω range, and read the tester.
 ★ If the tester does not read 0 Ω, the lead is defective. Replace the lead or the main harness or the sub harness.

○ If both ends of a harness [A] are far apart, ground [B] the one end [C], using a jumper lead [D] and check the continuity between the end [E] and the ground [F]. This enables to check a long harness for continuity. If the harness is open, repair or replace the harness.

○ When checking a harness [A] for short circuit, open one end [B] and check the continuity between the other end [C] and ground [D]. If there is continuity, the harness has a short circuit to ground, and it must be repaired or replaced.

• Narrow down suspicious locations by repeating the continuity tests from the ECU connectors.
 ★ If no abnormality is found in the wiring or connectors, the DFI parts are the next likely suspects. Check the part, starting with input and output voltages. However, there is no way to check the ECU itself.
 ★ If an abnormality is found, replace the affected DFI part.
 ★ If no abnormality is found in the wiring, connectors, and DFI parts, replace the ECU.

○ Lead Color Codes:

<table>
<thead>
<tr>
<th>Color</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>BK: Black</td>
<td>G: Green</td>
</tr>
<tr>
<td>BL: Blue</td>
<td>GY: Gray</td>
</tr>
<tr>
<td>BR: Brown</td>
<td>LB: Light blue</td>
</tr>
<tr>
<td>CH: Chocolate</td>
<td>LG: Light green</td>
</tr>
<tr>
<td>DG: Dark green</td>
<td>O: Orange</td>
</tr>
<tr>
<td>P: Pink</td>
<td>R: Red</td>
</tr>
<tr>
<td>PU: Purple</td>
<td>W: White</td>
</tr>
<tr>
<td>Y: Yellow</td>
<td></td>
</tr>
</tbody>
</table>

http://mototh.com
Troubleshooting the DFI System

○ There are two ways to inspect the DFI system. One is voltage Check Method and the other is Resistance Check Method.

(Voltage Check Method)
○ This method is conducted by measuring the input voltage [B] to a sensor [A] first, and then the output voltage [C] from the sensor.
○ Sometimes this method can detect a fault of the ECU.
● Refer to each sensor inspection section for detail in this chapter.
● Use a fully charged battery and a digital meter [D] which can be read two decimal places voltage or resistance.

(Resistance Check Method)
○ This method is simple. No need for a fully charged battery and the needle adapter. Just do the following especially when a sensor [A] is suspect.
● Turn the ignition switch OFF and disconnect the connectors.
● Inspect the sensor resistance, using a digital meter (see each sensor inspection in this chapter).
● Inspect the wiring and connectors [B] for continuity, using the hand tester [C] (analog tester) rather than a digital meter.

Special Tool - Hand Tester: 57001-1394
★ If the sensor, the wiring and connections are good, inspect the ECU for its ground and power supply (see this chapter). If the ground and power supply are good, the ECU is suspect. Replace the ECU.
Troubleshooting the DFI System

DFI Diagnosis Flow Chart

Problem occurs.

Confirm problems.

Gather information from rider.

The ignition switch is turned on, and the state of the FI indicator light (LED) is seen.

Until:

Conduct non-self-diagnosis inspection.

Conduct general fuel system inspection.

Lit:

Conduct self-diagnosis inspection.

General fuel system: throttle assy, air cleaner, fuel tank etc.

End.

Inquiries to Rider

Inquiries to Rider

- Each rider reacts to problems in different ways, so it is important to confirm what kind of symptoms the rider has encountered.
- Try to find out exactly what problem occurred under exactly what conditions by asking the rider; knowing this information may help you reproduce the problem.
- The following sample diagnosis sheet will help prevent you from overlooking any areas, and will help you decide if it is a DFI system problem, or a general engine problem.
Troubleshooting the DFI System

Sample Diagnosis Sheet

<table>
<thead>
<tr>
<th>Rider name:</th>
<th>Registration No. (license plate No.):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of initial registration:</td>
<td>Model:</td>
</tr>
<tr>
<td>Engine No.:</td>
<td>Frame No.:</td>
</tr>
<tr>
<td>Date problem occurred:</td>
<td>Mileage:</td>
</tr>
</tbody>
</table>

Environment when problem occurred.

<table>
<thead>
<tr>
<th>Weather</th>
<th>☐ fine, ☐ cloudy, ☐ rain, ☐ snow, ☐ always, ☐ other:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>☐ hot, ☐ warm, ☐ cold, ☐ very cold, ☐ always</td>
</tr>
<tr>
<td>Problem frequency</td>
<td>☐ chronic, ☐ often, ☐ once</td>
</tr>
<tr>
<td>Road</td>
<td>☐ street, ☐ highway, ☐ mountain road (☐ uphill, ☐ downhill), ☐ bumpy, ☐ pebble</td>
</tr>
<tr>
<td>Altitude</td>
<td>☐ normal, ☐ high (about 1,000 m or more)</td>
</tr>
</tbody>
</table>

Motorcycle conditions when problem occurred.

<table>
<thead>
<tr>
<th>FI indicator light (LED)</th>
<th>☐ light up immediately after ignition switch ON, and goes off after 1 ~ 2 seconds (normal)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐ lights blinks immediately after ignition switch ON, and stays on (DFI problem)</td>
</tr>
<tr>
<td></td>
<td>☐ lights up immediately after ignition switch ON, but goes off after about 10 seconds (DFI problem)</td>
</tr>
<tr>
<td></td>
<td>☐ unlights (light (LED), ECU or its wiring fault)</td>
</tr>
<tr>
<td></td>
<td>☐ sometimes lights up (probably wiring fault)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Starting difficulty</th>
<th>☐ starter motor not rotating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐ starter motor rotating but engine doesn’t turn over</td>
</tr>
<tr>
<td></td>
<td>☐ starter motor and engine don’t turn over</td>
</tr>
<tr>
<td></td>
<td>☐ no fuel flow (☐ no fuel in tank, ☐ no fuel pump sound)</td>
</tr>
<tr>
<td></td>
<td>☐ engine flooded (do not crank engine with throttle opened, which promotes engine flooding)</td>
</tr>
<tr>
<td></td>
<td>☐ no spark</td>
</tr>
<tr>
<td></td>
<td>☐ choke lever is not pulled fully when using the lever (pull it fully when using)</td>
</tr>
<tr>
<td></td>
<td>☐ other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engine stops</th>
<th>☐ right after starting</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐ when opening throttle grip</td>
</tr>
<tr>
<td></td>
<td>☐ when closing throttle grip</td>
</tr>
<tr>
<td></td>
<td>☐ when moving off</td>
</tr>
<tr>
<td></td>
<td>☐ when stopping the motorcycle</td>
</tr>
<tr>
<td></td>
<td>☐ when cruising</td>
</tr>
<tr>
<td></td>
<td>☐ other</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Poor running at low speed</th>
<th>☐ very low idle speed, ☐ very high idle speed, ☐ rough idle speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐ battery voltage is low (charge the battery)</td>
</tr>
<tr>
<td></td>
<td>☐ spark plug loose (tighten it)</td>
</tr>
<tr>
<td></td>
<td>☐ spark plug dirty, broken, or gap maladjusted (remedy it)</td>
</tr>
<tr>
<td></td>
<td>☐ backfiring</td>
</tr>
<tr>
<td></td>
<td>☐ afterfiring</td>
</tr>
<tr>
<td></td>
<td>☐ hesitation when acceleration</td>
</tr>
<tr>
<td></td>
<td>☐ engine oil viscosity too high</td>
</tr>
<tr>
<td></td>
<td>☐ brake dragging</td>
</tr>
<tr>
<td></td>
<td>☐ engine overheating</td>
</tr>
</tbody>
</table>

http://mototh.com
Troubleshooting the DFI System

<table>
<thead>
<tr>
<th>Issue</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clutch slipping</td>
<td>tighten it</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>Poor running or no power at high speed</td>
<td></td>
</tr>
<tr>
<td>Spark plug loose</td>
<td>tighten it</td>
</tr>
<tr>
<td>Spark plug dirty, broken, or gap maladjusted</td>
<td>remedy it</td>
</tr>
<tr>
<td>Spark plug incorrect</td>
<td>replace it</td>
</tr>
<tr>
<td>Knocking (fuel poor quality or incorrect, use high-octane gasoline)</td>
<td></td>
</tr>
<tr>
<td>Brake dragging</td>
<td></td>
</tr>
<tr>
<td>Clutch slipping</td>
<td></td>
</tr>
<tr>
<td>Engine overheating</td>
<td></td>
</tr>
<tr>
<td>Engine oil level too high</td>
<td></td>
</tr>
<tr>
<td>Engine oil viscosity too high</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>
DFI System Troubleshooting Guide

NOTE
- This is not an exhaustive list, giving every possible cause for each problem listed. It is meant simply as a rough guide to assist the troubleshooting for some of the more common difficulties.
- The ECU may be involved in the DFI electrical and ignition system troubles. If these parts and circuits are checked out good, be sure to check the ECU for ground and power supply. If the ground and power supply are checked good, replace the ECU.

Engine Doesn’t Start, Starting Difficulty

<table>
<thead>
<tr>
<th>Symptoms or possible Causes</th>
<th>Actions (chapter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starter motor not rotating:</td>
<td></td>
</tr>
<tr>
<td>Ignition and engine stop switches not ON</td>
<td>Turn both switches ON.</td>
</tr>
<tr>
<td>Starter lockout switch or neutral switch trouble</td>
<td>Inspect (see chapter 16).</td>
</tr>
<tr>
<td>Starter motor trouble</td>
<td>Inspect (see chapter 16).</td>
</tr>
<tr>
<td>Battery voltage low</td>
<td>Inspect and charge (see chapter 16).</td>
</tr>
<tr>
<td>Starter relays not contacting or operating</td>
<td>Inspect the starter relay (see chapter 16).</td>
</tr>
<tr>
<td>Starter button not contacting</td>
<td>Inspect and replace (see chapter 16).</td>
</tr>
<tr>
<td>Starter system wiring open or shorted</td>
<td>Inspect the wiring (see chapter 16).</td>
</tr>
<tr>
<td>Ignition switch trouble</td>
<td>Inspect and replace (see chapter 16).</td>
</tr>
<tr>
<td>Engine stop switch trouble</td>
<td>Inspect and repair or replace (see chapter 16).</td>
</tr>
<tr>
<td>Main 30A or ignition fuse blown</td>
<td>Inspect and replace (see chapter 16).</td>
</tr>
<tr>
<td>Starter motor rotating but engine doesn’t turn over:</td>
<td></td>
</tr>
<tr>
<td>Starter clutch trouble</td>
<td>Inspect (see chapter 16).</td>
</tr>
<tr>
<td>Starter idle gear trouble</td>
<td>Inspect (see chapter 16).</td>
</tr>
<tr>
<td>Engine won’t turn over:</td>
<td></td>
</tr>
<tr>
<td>Valve seizure</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Cylinder, piston seizure</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Camshaft seizure</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Connecting rod small end seizure</td>
<td>Inspect and replace (see chapter 9).</td>
</tr>
<tr>
<td>Connecting rod big end seizure</td>
<td>Inspect and replace (see chapter 9).</td>
</tr>
<tr>
<td>Crankshaft seizure</td>
<td>Inspect and replace (see chapter 9).</td>
</tr>
<tr>
<td>Transmission gear or bearing seizure</td>
<td>Inspect and replace (see chapter 9).</td>
</tr>
<tr>
<td>Balancer bearing seizure</td>
<td>Inspect and replace (see chapter 9).</td>
</tr>
<tr>
<td>No fuel flow:</td>
<td></td>
</tr>
<tr>
<td>No or little fuel in tank</td>
<td>Supply fuel (see Owner’s Manual).</td>
</tr>
<tr>
<td>Fuel pump not rotating</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Fuel injector trouble</td>
<td>Inspect and replace (see chapter 3).</td>
</tr>
<tr>
<td>Fuel tank air vent obstructed</td>
<td>Inspect and repair (see chapter 3).</td>
</tr>
<tr>
<td>Fuel filter or pump screen clogged</td>
<td>Inspect and replace fuel pump (see chapter 3).</td>
</tr>
<tr>
<td>Fuel pressure regulator clogged</td>
<td>Inspect and replace fuel pump (see chapter 3).</td>
</tr>
<tr>
<td>Fuel line clogged</td>
<td>Inspect and repair (see chapter 3).</td>
</tr>
<tr>
<td>Engine flooded:</td>
<td></td>
</tr>
<tr>
<td>Spark plug dirty, broken or gap maladjusted</td>
<td>Replace (see chapter 2).</td>
</tr>
<tr>
<td>Starting technique faulty</td>
<td>When flooded, don’t crank engine with throttle fully opened.</td>
</tr>
<tr>
<td>No spark or spark weak:</td>
<td></td>
</tr>
<tr>
<td>Ignition and engine stop switches not ON</td>
<td>Turn both switches ON.</td>
</tr>
</tbody>
</table>
DFI System Troubleshooting Guide

<table>
<thead>
<tr>
<th>Symptoms or possible Causes</th>
<th>Actions (chapter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clutch lever not pulled in and gear not in neutral whether sidestand up or not</td>
<td>Pull the lever in and shift the gear in neutral.</td>
</tr>
<tr>
<td>Though clutch lever pulled in, sidestand up and gear not in neutral</td>
<td>Sidestand down and clutch lever pulled in whether gear in neutral or not.</td>
</tr>
<tr>
<td>Vehicle-down-sensor coming off</td>
<td>Reinstall (see chapter 3).</td>
</tr>
<tr>
<td>Vehicle-down-sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>ECU ground or power supply trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Battery voltage low</td>
<td>Inspect and charge (see chapter 16).</td>
</tr>
<tr>
<td>Spark plug dirty, broken or gap maladjusted</td>
<td>Replace (see chapter 2).</td>
</tr>
<tr>
<td>Stick coil trouble</td>
<td>Inspect stick coil (see chapter 16).</td>
</tr>
<tr>
<td>Stick coil shorted or not in good contact</td>
<td>Reinstall or inspect stick coil (see chapter 16).</td>
</tr>
<tr>
<td>Spark plug incorrect</td>
<td>Replace it with the correct plug (see chapter 16).</td>
</tr>
<tr>
<td>Neutral, starter lockout or sidestand switch trouble</td>
<td>Inspect each switch (see chapter 16).</td>
</tr>
<tr>
<td>Crankshaft sensor trouble</td>
<td>Inspect (see chapter 16).</td>
</tr>
<tr>
<td>Stick coil trouble</td>
<td>Inspect (see chapter 16).</td>
</tr>
<tr>
<td>Ignition switch shorted</td>
<td>Inspect and replace (see chapter 16).</td>
</tr>
<tr>
<td>Engine stop switch shorted</td>
<td>Inspect and repair or replace (see chapter 2).</td>
</tr>
<tr>
<td>Starter system wiring shorted or open</td>
<td>Inspect and repair or replace (see chapter 16).</td>
</tr>
<tr>
<td>Main 30A or ignition fuse blown</td>
<td>Inspect and replace (see chapter 16).</td>
</tr>
<tr>
<td>Fuel/air mixture incorrect:</td>
<td></td>
</tr>
<tr>
<td>Air cleaner clogged, poorly sealed or missing</td>
<td>Clean or reinstall (see chapter 3).</td>
</tr>
<tr>
<td>Leak from oil filler cap, crankcase breather hose or air cleaner drain hose</td>
<td>Inspect and repair or replace (see chapter 3).</td>
</tr>
<tr>
<td>Water or foreign matter in fuel</td>
<td>Change fuel. Inspect and clean fuel system (see chapter 3).</td>
</tr>
<tr>
<td>Fuel pressure regulator trouble</td>
<td>Inspect fuel pressure and replace fuel pump (see chapter 3).</td>
</tr>
<tr>
<td>Main throttle sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Fuel pressure may be low</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Fuel pump trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Fuel injector trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Inlet air pressure sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Inlet air temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Water temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Crankshaft sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Compression low:</td>
<td></td>
</tr>
<tr>
<td>Spark plug loose</td>
<td>Reinstall (see chapter 16).</td>
</tr>
<tr>
<td>Cylinder head not sufficiently tightened down</td>
<td>Tighten (see chapter 5).</td>
</tr>
<tr>
<td>Cylinder, piston worn</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Piston ring bad (worn, weak, broken or sticking)</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Piston ring/groove clearance excessive</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Cylinder head gasket damaged</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Cylinder head warped</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
</tbody>
</table>
DFI System Troubleshooting Guide

Symptoms or possible Causes

<table>
<thead>
<tr>
<th>No valve clearance</th>
<th>Adjust (see chapter 2).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve guide worn</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Valve spring broken or weak</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Valve not seating properly (valve bent, worn or carbon accumulating on seating surface)</td>
<td>Inspect and repair or replace (see chapter 5).</td>
</tr>
</tbody>
</table>

Poor Running at Low Speed

<table>
<thead>
<tr>
<th>Symptoms or Possible Causes</th>
<th>Actions (chapter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark weak:</td>
<td></td>
</tr>
<tr>
<td>Battery voltage low</td>
<td>Inspect and charge (see chapter 16).</td>
</tr>
<tr>
<td>Spark plug dirty, broken or gap maladjusted</td>
<td>Replace (see chapter 2).</td>
</tr>
<tr>
<td>Stick coil trouble</td>
<td>Inspect the stick coil (see chapter 16).</td>
</tr>
<tr>
<td>Stick coil shorted or not in good contact</td>
<td>Reinstall or inspect stick coil (see chapter 16).</td>
</tr>
<tr>
<td>Spark plug incorrect</td>
<td>Replace it with the correct plug (see chapter 16).</td>
</tr>
<tr>
<td>IC igniter in ECU trouble</td>
<td>Inspect (see chapter 16).</td>
</tr>
<tr>
<td>Crankshaft sensor trouble</td>
<td>Inspect (see chapter 16).</td>
</tr>
<tr>
<td>Stick coil trouble</td>
<td>Inspect (see chapter 16).</td>
</tr>
<tr>
<td>Fuel/air mixture incorrect:</td>
<td>Supply fuel (see Owner's Manual).</td>
</tr>
<tr>
<td>Little fuel in tank</td>
<td></td>
</tr>
<tr>
<td>Air cleaner clogged, poorly sealed, or missing</td>
<td>Clean element or inspect sealing (see chapter 2, 3).</td>
</tr>
<tr>
<td>Air cleaner duct loose</td>
<td>Reinstall (see chapter 3).</td>
</tr>
<tr>
<td>Air cleaner O-ring damaged</td>
<td>Replace (see chapter 3).</td>
</tr>
<tr>
<td>Fuel tank air vent obstructed</td>
<td>Inspect and repair (see chapter 3).</td>
</tr>
<tr>
<td>Throttle body assy loose</td>
<td>Reinstall (see chapter 3).</td>
</tr>
<tr>
<td>Throttle body assy O-ring damage</td>
<td>Replace (see chapter 3).</td>
</tr>
<tr>
<td>Fuel filter or pump screen clogged</td>
<td>Inspect and replace fuel pump (see chapter 3).</td>
</tr>
<tr>
<td>Fuel pressure regulator clogged</td>
<td>Inspect fuel pressure and replace fuel pump (see chapter 3).</td>
</tr>
<tr>
<td>Fuel line clogged</td>
<td>Inspect and repair (see chapter 3).</td>
</tr>
<tr>
<td>Inlet air pressure sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Inlet air temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Thermostat trouble</td>
<td>Inspect and replace (see chapter 4).</td>
</tr>
<tr>
<td>Unstable (rough) idling:</td>
<td></td>
</tr>
<tr>
<td>Fuel injector trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Main throttle sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Crankshaft sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Throttle valves not synchronizing</td>
<td>Inspect (see chapter 2).</td>
</tr>
<tr>
<td>Inlet air temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Water temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Fuel pressure too low or too high</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Battery voltage low</td>
<td>Inspect and charge (see chapter 16).</td>
</tr>
<tr>
<td>Incorrect idle speed:</td>
<td></td>
</tr>
<tr>
<td>Water temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Main throttle sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
</tbody>
</table>
3-30 FUEL SYSTEM (DFI)

DFI System Troubleshooting Guide

<table>
<thead>
<tr>
<th>Symptoms or Possible Causes</th>
<th>Actions (chapter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine stalls easily:</td>
<td></td>
</tr>
<tr>
<td>Fuel pump trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Fuel injector trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Main throttle sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Fuel pressure too low or too high</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Inlet air pressure sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Water temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Inlet air temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Fuel line clogged</td>
<td>Inspect and repair (see chapter 3).</td>
</tr>
<tr>
<td>Fuel pressure too low or too high</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Fuel pressure regulator trouble</td>
<td>Inspect fuel pressure and replace fuel pump (see chapter 3).</td>
</tr>
<tr>
<td>Crankshaft sensor trouble</td>
<td>Inspect (see chapter 16).</td>
</tr>
<tr>
<td>Stick coil trouble</td>
<td>Inspect (see chapter 16).</td>
</tr>
<tr>
<td>Compression Low:</td>
<td></td>
</tr>
<tr>
<td>Spark plug loose</td>
<td>Reinstall (see chapter 16).</td>
</tr>
<tr>
<td>Cylinder head not sufficiently tightened down</td>
<td>Tighten (see chapter 5).</td>
</tr>
<tr>
<td>No valve clearance</td>
<td>Adjust (see chapter 2).</td>
</tr>
<tr>
<td>Cylinder, piston worn</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Piston ring bad (worn, weak, broken or sticking)</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Piston ring/groove clearance excessive</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Cylinder head gasket damaged</td>
<td>Replace (see chapter 5).</td>
</tr>
<tr>
<td>Cylinder head warped</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Valve guide worn or stem seal damaged</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Valve spring broken or weak</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Valve not seating properly (valve bent, worn or carbon accumulating on seating surface)</td>
<td>Inspect and repair or replace (see chapter 5).</td>
</tr>
<tr>
<td>Camshaft cam worn</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Hesitation:</td>
<td></td>
</tr>
<tr>
<td>Too low fuel pressure</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Clogged fuel line</td>
<td>Inspect and repair (see chapter 3).</td>
</tr>
<tr>
<td>Cracked or obstructed inlet air pressure sensor hose</td>
<td>Inspect and repair or replace (see chapter 3).</td>
</tr>
<tr>
<td>Fuel pump trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Fuel injector trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Inlet air temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Main throttle sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Subthrottle sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Subthrottle valve actuator trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Water temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Inlet air pressure sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Loose injector connectors</td>
<td>Remedy (see chapter 3).</td>
</tr>
<tr>
<td>Crankshaft sensor trouble</td>
<td>Inspect and repair or replace (see chapter 16).</td>
</tr>
<tr>
<td>Stick coil trouble</td>
<td>Inspect and repair or replace (see chapter 16).</td>
</tr>
<tr>
<td>Symptoms or Possible Causes</td>
<td>Actions (chapter)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Loose terminal of battery (–) lead or engine ground lead</td>
<td>Inspect and repair (see chapter 16).</td>
</tr>
<tr>
<td>Delay of ignition timing</td>
<td>Inspect crankshaft sensor and IC igniter in ECU (see chapter 16).</td>
</tr>
<tr>
<td>Poor acceleration:</td>
<td></td>
</tr>
<tr>
<td>Too low fuel pressure</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Water or foreign matter in fuel</td>
<td>Change fuel. Inspect and clean fuel system (see chapter 3).</td>
</tr>
<tr>
<td>Clogged fuel filter or pump screen</td>
<td>Inspect and replace fuel pump (see chapter 3).</td>
</tr>
<tr>
<td>Fuel pump trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Fuel injector trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Inlet air temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Water temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Subthrottle sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Subthrottle valve actuator trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Stick coil trouble</td>
<td>Inspect and replace (see chapter 16).</td>
</tr>
<tr>
<td>Engine oil level to high</td>
<td>Repair (see chapter 7).</td>
</tr>
<tr>
<td>Spark plug dirty, broken or gap maladjusted</td>
<td>Replace (see chapter 2).</td>
</tr>
<tr>
<td>Stumble:</td>
<td></td>
</tr>
<tr>
<td>Too low fuel pressure</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Fuel injector trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Main throttle sensor malfunction</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Subthrottle sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Subthrottle valve actuator trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Water temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Inlet air pressure sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Surge:</td>
<td></td>
</tr>
<tr>
<td>Unstable fuel pressure</td>
<td>Fuel pressure regulator trouble (Inspect and replace fuel pump) or kinked fuel line (Inspect and repair fuel line) (see chapter 3).</td>
</tr>
<tr>
<td>Fuel injector trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Water temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Backfiring when deceleration:</td>
<td></td>
</tr>
<tr>
<td>Spark plug dirty, broken or gap maladjusted</td>
<td>Replace (see chapter 2).</td>
</tr>
<tr>
<td>Too low fuel pressure</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Fuel pump trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Main throttle sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Inlet air temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Water temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Inlet air pressure sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Air switching valve broken</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Air suction valve trouble</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>After fire:</td>
<td></td>
</tr>
<tr>
<td>Crankshaft sensor trouble</td>
<td>Inspect (see chapter 16).</td>
</tr>
<tr>
<td>Spark plug burned or gap maladjusted</td>
<td>Replace (see chapter 2).</td>
</tr>
</tbody>
</table>
3-32 FUEL SYSTEM (DFI)

DFI System Troubleshooting Guide

<table>
<thead>
<tr>
<th>Symptoms or Possible Causes</th>
<th>Actions (chapter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet air temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Water temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Inlet air pressure sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Fuel injector trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Run-on (dieseling):</td>
<td></td>
</tr>
<tr>
<td>Ignition switch trouble</td>
<td>Inspect and replace (see chapter 16).</td>
</tr>
<tr>
<td>Engine stop switch trouble</td>
<td>Inspect and repair or replace (see chapter 2).</td>
</tr>
<tr>
<td>Fuel injector trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Loose terminal of battery (−) cable or ECU ground lead</td>
<td>Inspect and repair (see chapter 16).</td>
</tr>
<tr>
<td>Carbon accumulating on valve seating surface</td>
<td>Repair (see chapter 5).</td>
</tr>
<tr>
<td>Engine overheating</td>
<td>(see Overheating of Troubleshooting Guide, see chapter 17)</td>
</tr>
<tr>
<td>Other:</td>
<td></td>
</tr>
<tr>
<td>Engine oil viscosity too high</td>
<td>Change (see chapter 2).</td>
</tr>
<tr>
<td>Drive train trouble</td>
<td>Inspect drive chain (see chapter 2) and sprocket (see chapter 11).</td>
</tr>
<tr>
<td>Brake dragging</td>
<td>Inspect caliper fluid seal damage or clogging of master cylinder relief and supply ports (see chapter 12).</td>
</tr>
<tr>
<td>Clutch slipping</td>
<td>Inspect friction plates for wear (see chapter 6).</td>
</tr>
<tr>
<td>Engine overheating</td>
<td>(see Overheating of Troubleshooting Guide, see chapter 17)</td>
</tr>
<tr>
<td>Air switching valve trouble</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Air suction valve trouble</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Intermittent any DFI fault and its recovery</td>
<td>Check that DFI connectors are clean and tight, and examine wires for signs of burning or fraying (see chapter 3).</td>
</tr>
</tbody>
</table>

Poor Running or No Power at High Speed:

<table>
<thead>
<tr>
<th>Symptoms or Possible Causes</th>
<th>Actions (chapter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Firing incorrect:</td>
<td></td>
</tr>
<tr>
<td>Spark plug dirty, broken or maladjusted</td>
<td>Replace (see chapter 2).</td>
</tr>
<tr>
<td>Stick coil trouble</td>
<td>Inspect stick coil (see chapter 16).</td>
</tr>
<tr>
<td>Stick coil shorted or not in good contact</td>
<td>Reinstall or inspect stick coil (see chapter 16).</td>
</tr>
<tr>
<td>Spark plug incorrect</td>
<td>Replace it with the correct plug (see chapter 16).</td>
</tr>
<tr>
<td>IC igniter in ECU trouble</td>
<td>Inspect (see chapter 16).</td>
</tr>
<tr>
<td>Crankshaft sensor trouble</td>
<td>Inspect (see chapter 16).</td>
</tr>
<tr>
<td>Stick coil trouble</td>
<td>Inspect (see chapter 16).</td>
</tr>
<tr>
<td>Fuel/air mixture incorrect:</td>
<td></td>
</tr>
<tr>
<td>Air cleaner clogged, poorly sealed, or missing</td>
<td>Clean element or inspect sealing (see chapter 3).</td>
</tr>
<tr>
<td>Air cleaner duct loose</td>
<td>Reinstall (see chapter 3).</td>
</tr>
<tr>
<td>Air cleaner O-ring damaged</td>
<td>Replace (see chapter 3).</td>
</tr>
<tr>
<td>Water or foreign matter in fuel</td>
<td>Change fuel. Inspect and clean fuel system (see chapter 3).</td>
</tr>
<tr>
<td>Throttle body assy loose</td>
<td>Reinstall (see chapter 3).</td>
</tr>
</tbody>
</table>

http://mototh.com
DFI System Troubleshooting Guide

<table>
<thead>
<tr>
<th>Symptoms or Possible Causes</th>
<th>Actions (chapter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throttle body assy O-ring damaged</td>
<td>Replace (see chapter 3).</td>
</tr>
<tr>
<td>Fuel tank air vent obstructed</td>
<td>Inspect and repair (see chapter 3).</td>
</tr>
<tr>
<td>Fuel line clogged</td>
<td>Inspect and repair (see chapter 3).</td>
</tr>
<tr>
<td>Fuel pump operates intermittently and often DFI fuse blows.</td>
<td>Pump bearings may wear. Replace the pump (see chapter 3).</td>
</tr>
<tr>
<td>Fuel pump trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Inlet air temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Main throttle sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Inlet air pressure sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Cracked or obstructed inlet air pressure sensor hose</td>
<td>Inspect and repair or replace (see chapter 3).</td>
</tr>
<tr>
<td>Injector clogged</td>
<td>Visually inspect and replace (see chapter 3).</td>
</tr>
<tr>
<td>Compression low:</td>
<td></td>
</tr>
<tr>
<td>Spark plug loose</td>
<td>Reinstall (see chapter 16).</td>
</tr>
<tr>
<td>Cylinder head not sufficiently tightened down</td>
<td>Tighten (see chapter 5).</td>
</tr>
<tr>
<td>No valve clearance</td>
<td>Adjust (see chapter 2).</td>
</tr>
<tr>
<td>Cylinder, piston worn</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Piston ring bad (worn, weak, broken or sticking)</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Piston ring/groove clearance excessive</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Cylinder head gasket damaged</td>
<td>Replace (see chapter 5).</td>
</tr>
<tr>
<td>Cylinder head warped</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Valve spring broken or weak</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Valve not seating properly (valve bent, worn or carbon</td>
<td>Inspect and repair or replace (see chapter 5).</td>
</tr>
<tr>
<td>Knocking:</td>
<td></td>
</tr>
<tr>
<td>Carbon built up in combustion chamber</td>
<td>Repair (see chapter 5).</td>
</tr>
<tr>
<td>Fuel poor quality or incorrect (Use the gasoline recommended</td>
<td>Change fuel (see chapter 3).</td>
</tr>
<tr>
<td>in the Owner's Manual)</td>
<td></td>
</tr>
<tr>
<td>Spark plug incorrect</td>
<td>Replace it with the correct plug (see chapter 16).</td>
</tr>
<tr>
<td>Stick coil trouble</td>
<td>Inspect (see chapter 16).</td>
</tr>
<tr>
<td>IC igniter in ECU trouble</td>
<td>Inspect (see chapter 16).</td>
</tr>
<tr>
<td>Inlet air temperature sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Miscellaneous:</td>
<td></td>
</tr>
<tr>
<td>Subthrottle sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Subthrottle valve actuator trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Speed sensor trouble</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Throttle valves won’t fully open</td>
<td>Inspect throttle cable and lever linkage (see chapter 3).</td>
</tr>
<tr>
<td>Brake dragging</td>
<td>Inspect caliper fluid seal damage or clogging of master</td>
</tr>
<tr>
<td></td>
<td>cylinder relief and supply ports (see chapter 12).</td>
</tr>
<tr>
<td>Clutch slipping</td>
<td>Inspect friction plates for wear (see chapter 6).</td>
</tr>
<tr>
<td>Engine overheating - Water temperature sensor, crankshaft</td>
<td>(see Overheating of Troubleshooting Guide in chapter 17).</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine oil level too high</td>
<td>Repair (see chapter 7).</td>
</tr>
<tr>
<td>Engine oil viscosity too high</td>
<td>Change (see chapter 2).</td>
</tr>
</tbody>
</table>

http://mototh.com
3-34 FUEL SYSTEM (DFI)

DFI System Troubleshooting Guide

<table>
<thead>
<tr>
<th>Symptoms or Possible Causes</th>
<th>Actions (chapter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive train trouble</td>
<td>Inspect drive chain (see chapter 2) and sprockets (see chapter 11).</td>
</tr>
<tr>
<td>Camshaft cam worn</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Air switching valve trouble</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Air suction valve trouble</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Catalytic converters melt down due to muffler overheating</td>
<td>Replace muffler (see chapter 5).</td>
</tr>
<tr>
<td>Exhaust Smokes Excessively:</td>
<td></td>
</tr>
<tr>
<td>(White smokes)</td>
<td></td>
</tr>
<tr>
<td>Piston oil ring worn</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Cylinder worn</td>
<td>Inspect and replace (see chapter 5).</td>
</tr>
<tr>
<td>Valve oil seal damaged</td>
<td>Replace (see chapter 5).</td>
</tr>
<tr>
<td>Valve guide worn</td>
<td>Replace the guide (see chapter 5).</td>
</tr>
<tr>
<td>Engine oil level too high</td>
<td>Repair (see chapter 7).</td>
</tr>
<tr>
<td>(Black smoke)</td>
<td></td>
</tr>
<tr>
<td>Air cleaner clogged</td>
<td>Clean (see chapter 3).</td>
</tr>
<tr>
<td>Too high fuel pressure</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Injector stuck open</td>
<td>Inspect (see chapter 3).</td>
</tr>
<tr>
<td>Water temperature sensor trouble</td>
<td>Inspect and replace (see chapter 3).</td>
</tr>
<tr>
<td>Inlet air temperature sensor trouble</td>
<td>Inspect and replace (see chapter 3).</td>
</tr>
<tr>
<td>(Brown smoke)</td>
<td></td>
</tr>
<tr>
<td>Air cleaner duct loose</td>
<td>Reinstall (see chapter 3).</td>
</tr>
<tr>
<td>Air cleaner O-ring damaged</td>
<td>Replace (see chapter 3).</td>
</tr>
<tr>
<td>Too low fuel pressure</td>
<td>Inspect fuel line and fuel pump (see chapter 3).</td>
</tr>
<tr>
<td>Water temperature sensor trouble</td>
<td>Inspect and replace (see chapter 3).</td>
</tr>
<tr>
<td>Inlet air temperature sensor trouble</td>
<td>Inspect and replace (see chapter 3).</td>
</tr>
</tbody>
</table>
Self-Diagnosis

Self-diagnosis Outline

The self-diagnosis system has three modes and can be switched to another mode by grounding the self-diagnosis terminal.

User Mode

The ECU notifies the rider of troubles in DFI system and ignition system by lighting the FI indicator when DFI system and ignition system parts are faulty, and initiates fail-safe function. In case of serious troubles, the ECU stops the injection/ignition/starter motor operation.

Dealer Mode 1

The FI indicator light (LED) emits service code(s) to show the problem(s) which the DFI system, and ignition system has at the moment of diagnosis.

Dealer Mode 2

The FI indicator light (LED) emits service code(s) to show the problem(s) which the DFI system, and ignition system had in the past.

Self-diagnosis Procedures

When a problem occurs with the DFI system and ignition system, the DFI indicator light (LED) [A] goes on.

NOTE

○ Use a fully charged battery when conducting self-diagnosis. Otherwise, the light (LED) blinks very slowly or doesn’t blink.

○ Keep the self-diagnosis terminal grounded during self-diagnosis, with an auxiliary lead.

• Remove the seat (see Seat Removal in the Frame chapter).
• Ground [A] the self-diagnosis terminal [B] (Orange/Black lead) to the battery (–) terminal [C] or battery (–) lead connector, using a wire.

• Turn on the ignition switch.
• Connect an auxiliary lead [E] to the self-diagnosis terminal [G] for grounding.
• To enter the self-diagnosis dealer mode 1, ground [A] the self-diagnosis indicator terminal to the battery (–) terminal for more than 2 seconds [C], and then keep it grounded continuously [D].

○ Count the blinks of the light (LED) to read the service code. Keep the auxiliary lead ground until you finish reading the service code.
3-36 FUEL SYSTEM (DFI)

Self-Diagnosis

- To enter the self-diagnosis dealer mode 2, open [B] and ground [A] the lead more than five times [F] within 2 seconds [C] after the lead is first grounded, and then keep it grounded continuously [D] for more than 2 seconds.

○ Count the blinks of the light (LED) to read the service code. Keep the auxiliary lead ground until you finish reading the service code.
 Auxiliary Lead [E]
 Self-diagnosis Terminal [G]

NOTE
○ To enter the dealer mode 2 from the dealer mode 1, turn off the ignition switch once.

Service Code Clearing Procedures

Service Code Clearing Procedures
- Enter the self-diagnosis dealer mode 2 (see Self-diagnosis Procedures in this chapter).

NOTE
○ Make sure to keep the grounding until the following opening and grounding starts.
- Pull the clutch lever in more than 5 seconds, and then release it.
- Repeat opening [B] and grounding [A] the lead (self-diagnosis terminal) more than five times [F] within 2 seconds [C] after the lead is grounded, and then keep it grounded continuously [D] for more than 2 seconds.
 Auxiliary Lead [E]
 Self-diagnosis Terminal [G]
Self-Diagnosis

Turn the ignition switch OFF

Turn the ignition switch ON, and self-diagnosis mode starts, using an auxiliary lead.

Dealer

Dealer Mode 1.
Ground the self-diagnosis terminal for more than 2 seconds and then keep it grounded.

Dealer Mode 2.
Ground and open the self-diagnosis terminal more than five times within 2 seconds and then keep it grounded.

Fi indicator light (LED) blinks to display the service code for more than 2 seconds.

Locate the problem with the service code table and check and repair DFI or ignition system according to inspection procedure on all service codes.

Remove the auxiliary lead, ending the self-diagnosis mode.

OK

Make sure the Fi indicator light (LED) doesn't go ON.

OK

Run the engine for several minutes at idling and run the motorcycle at 30 km/h (18 mph) or above in order to confirm no problem.

END

http://mototh.com
3-38 FUEL SYSTEM (DFI)

Self-Diagnosis

How to Read Service Codes

How to Read Service Codes
- Service codes are shown by a series of long and short blinks of the FI indicator light (LED) as shown below.
- Read 10th digit and unit digit as the FI indicator light (LED) blinks.
- When there are a number of problems, all the service codes can be stored and the display will begin starting from the lowest number service code in the numerical order. Then after completing all codes, the display is repeated until the self-diagnosis indicator terminal is open.
- If there is no problem, no code and unlight.
- For example, if two problems occurred in the order of 21, 12, the service codes are displayed from the lowest number in the order listed.
 (12 → 21) → (12 → 21) → · · · (repeated)

○ If the problem is with the following parts, the ECU cannot memorize these problems, the FI indicator light (LED) doesn’t go on, and no service codes can be displayed.
 - FI Indicator Light (LED)
 - Fuel Pump
 - Fuel Pump Relay
 - DFI Main Relay
 - ECU Power Source Wiring and Ground Wiring (see ECU Inspection)
 - Fuel Injectors

How to Erase Service Codes

How to Erase Service Codes
- Even if the ignition switch is turned OFF, the battery or the ECU are disconnected or the problem is solved, all service codes remain in the ECU.
- Refer to the Service Code Clearing Procedure for the service code erasure.
Self-Diagnosis

Service Code Table

<table>
<thead>
<tr>
<th>Service Code</th>
<th>FI Indicator LED Light</th>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>ON, OFF</td>
<td>Main throttle sensor malfunction, wiring open or short</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Inlet air pressure sensor malfunction, wiring open or short</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Inlet air temperature sensor malfunction, wiring open or short</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Water temperature sensor malfunction, wiring open or short</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Crankshaft sensor malfunction, wiring open or short</td>
</tr>
<tr>
<td>24 and 25</td>
<td></td>
<td>Speed sensor malfunction, wiring open or short First 24 is displayed and then 25, repeatedly</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>Vehicle-down sensor, malfunction, wiring open or short</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>Subthrottle sensor malfunction, wiring open or short</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>Oxygen sensor inactivation, wiring open or short (Europe Model)</td>
</tr>
<tr>
<td>51</td>
<td></td>
<td>Stick (Ignition) coil #1 malfunction, wiring open or short</td>
</tr>
<tr>
<td>52</td>
<td></td>
<td>Stick (Ignition) coil #2 malfunction, wiring open or short</td>
</tr>
<tr>
<td>56</td>
<td></td>
<td>Radiator fan relay malfunction, wiring open or short</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>Subthrottle valve actuator malfunction, wiring open or short</td>
</tr>
<tr>
<td>64</td>
<td></td>
<td>Air switching valve malfunction, wiring open or short</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td>Oxygen sensor heater malfunction, wiring open or short (Europe Model)</td>
</tr>
<tr>
<td>94</td>
<td></td>
<td>Oxygen sensor malfunction, wiring open or short (Europe Model)</td>
</tr>
</tbody>
</table>

Notes:
- The ECU may be involved in these problems. If all the parts and circuits checked out good, be sure to check the ECU for ground and power supply. If the ground and power supply are checked good, replace the ECU.
- When no service code is displayed, the electrical parts of the DFI system has no fault, and the mechanical parts of the DFI system and the engine are suspect.

http://mototh.com
3-40 FUEL SYSTEM (DFI)

Self-Diagnosis

Backups

The ECU takes the following measures to prevent engine damage when the DFI or the ignition system parts have troubles.

<table>
<thead>
<tr>
<th>Service Codes</th>
<th>Parts</th>
<th>Output Signal Usable Range or Criteria</th>
<th>Backups by ECU</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Main Throttle Sensor</td>
<td>Main Throttle Sensor Output Voltage 0.20 ~ 4.8 V</td>
<td>If the main throttle sensor system fails (the signal is out of the usable range, wiring short or open), the ECU locks ignition timing into the ignition timing at closed throttle position and sets the DFI in the D-J method. Also, the main throttle sensor system and inlet air pressure fails, the ECU locks ignition timing into the ignition timing at closed throttle position and sets the DFI in the α-N method.</td>
</tr>
<tr>
<td>12</td>
<td>Inlet Air Pressure Sensor</td>
<td>Inlet Air Pressure (absolute) $P_v = 150 \text{ mmHg} \sim 800 \text{ mmHg}$</td>
<td>If the inlet air pressure sensor system fails (the signal P_v is out of the usable range, wiring short or open), the ECU sets the DFI in the α-N method.</td>
</tr>
<tr>
<td>13</td>
<td>Inlet Air Temperature Sensor</td>
<td>Inlet Air Temperature $T_a = -30^\circ\text{C} \sim +120^\circ\text{C}$</td>
<td>If the inlet air temperature sensor fails (the signal is out of the usable range, wiring short or open), the ECU sets T_a at 40°C.</td>
</tr>
<tr>
<td>14</td>
<td>Water Temperature Sensor</td>
<td>Water Temperature $T_w = -30^\circ\text{C} \sim +120^\circ\text{C}$</td>
<td>If the water temperature sensor system fails (the signal is out of the usable range, wiring short or open), the ECU sets T_w at 80°C.</td>
</tr>
<tr>
<td>21</td>
<td>Crankshaft Sensor</td>
<td>Crankshaft sensor must send 22 signals (output signal) to the ECU at the one cranking.</td>
<td>If crankshaft sensor generates other than 22 signals, the engine stops by itself.</td>
</tr>
<tr>
<td>24 and 25</td>
<td>Speed Sensor</td>
<td>Speed sensor must send 4 signals (output signal) to the ECU at the one rotation of the engine sprocket. The gear position is decided by the signal of the speed sensor.</td>
<td>If the speed sensor system fails (no signal, wiring short or open), the speedometer shows 0, and the ECU sets the top (6) gear position.</td>
</tr>
<tr>
<td>31</td>
<td>Vehicle-down Sensor</td>
<td>Vehicle-down Sensor Output Voltage (signal) $V_d = 0.65 \text{ V} \sim 4.45 \text{ V}$</td>
<td>If the vehicle-down sensor system has failures (the output voltage V_d is more than usable range, wiring open), the ECU shuts off the fuel pump, the fuel injectors and the ignition system.</td>
</tr>
<tr>
<td>32</td>
<td>Subthrottle Sensor</td>
<td>Subthrottle Sensor Output Voltage 0.15 ~ 4.85 V</td>
<td>If the subthrottle sensor system fails (the signal is out of the usable range, wiring short or open), the actuator locks sub throttle valve at full open position.</td>
</tr>
<tr>
<td>33</td>
<td>Oxygen Sensor (Europe Model)</td>
<td>The oxygen sensor is active and sensor must send signals (output voltage) continuously to the ECU.</td>
<td>If the oxygen sensor is not activated, the ECU stops oxygen sensor feedback mode.</td>
</tr>
</tbody>
</table>
Self-Diagnosis

<table>
<thead>
<tr>
<th>Service Codes</th>
<th>Parts</th>
<th>Output Signal Usable Range or Criteria</th>
<th>Backups by ECU</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Stick Coil #1 (Ignition Coil)*</td>
<td>The stick coil primary winding must send signals (output voltage) continuously to the ECU.</td>
<td>If the ignition primary winding #1 has failures (no signal, wiring short or open), the ECU shuts off the injector #1 to stop fuel to the cylinder #1, though the engine keeps running.</td>
</tr>
<tr>
<td>52</td>
<td>Stick Coil #2 (Ignition Coil)*</td>
<td>The stick coil primary winding must send signals (output voltage) continuously to the ECU.</td>
<td>If the ignition primary winding #2 has failures (no signal, wiring short or open), the ECU shuts off the injector #2 to stop fuel to the cylinder #2, though the engine keeps running.</td>
</tr>
<tr>
<td>62</td>
<td>Subthrottle Valve Actuator</td>
<td>The actuator operates open and close of the subthrottle valve by the pulse signal from the ECU.</td>
<td>If the subthrottle valve actuator fails (the signal is out of the usable range, wiring short or open), the ECU stops the current to the actuator.</td>
</tr>
<tr>
<td>67</td>
<td>Oxygen Sensor (Europe Model)</td>
<td>The oxygen sensor heater raise temperature of the sensor for its earlier activation. 12V-6.6W, 0.55A</td>
<td>If the oxygen sensor heater fails (wiring short or open), the ECU stops the current to the heater.</td>
</tr>
<tr>
<td>94</td>
<td>Oxygen Sensor (Europe Model)</td>
<td>The oxygen sensor must send signals (output voltage) continuously to the EUC</td>
<td>If the oxygen sensor output voltage is incorrect, the ECU stops oxygen sensor feed back mode.</td>
</tr>
</tbody>
</table>

Note:

(1) **D-J Method and α - N Method:** When the engine load is light like at idling or low speed, the ECU determines the injection quantity by calculating from the throttle vacuum (inlet air pressure sensor output voltage) and engine speed (crankshaft sensor output voltage). This method is called D-J method (low-speed mode). As the engine speed increases, and the engine load turns middle to heavy, the ECU determines the injection quantity by calculating from the throttle opening (throttle sensor output voltage) and the engine speed. This method is called α - N method (high-speed mode).

(*) This depends on the number of stopped cylinders.
3-42 FUEL SYSTEM (DFI)
Main Throttle Sensor (Service Code 11)

Main Throttle Sensor Removal/Adjustment

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not remove or adjust the main throttle sensor [A] since it has been adjusted and set with precision at the factory. Never drop the sensor, especially on a hard surface. Such a shock to the sensor can damage it.</td>
</tr>
</tbody>
</table>

Input Voltage Inspection

NOTE

○ Be sure the battery is fully charged.

• Turn the ignition switch OFF.
• Disconnect the main throttle sensor connector and connect the harness adapter [A] between these connectors.
• Connect a digital meter to the harness adapter lead.

 Special Tool - Throttle Sensor Harness Adapter: 57001-1538

• Measure the sensor input voltage with the engine stopped and with the connector joined.
• Turn the ignition switch ON.

 Main Throttle Sensor Input Voltage Connection to Adapter

 Meter (+) → R (sensor BL) lead
 Meter (–) → BK (sensor BR/BK) lead

 Standard: 4.75 ~ 5.25 V DC

• Turn the ignition switch OFF.

★ If the input voltage is normal, check the sensor output voltage.
★ If the input voltage is less than the standard, remove the ECU and check the wiring between these connectors.
○ Disconnect the ECU and sensor connectors.

 Wiring Connection

 ECU Connector [A] ←→ Throttle Sensor Connector [B]

 BL lead (ECU terminal 10)
 BR/BK lead (ECU terminal 28)

★ If the wiring is good, check the ECU for its ground and power supply (see ECU Power Supply Inspection).
Main Throttle Sensor (Service Code 11)

Output Voltage Inspection
- Measure the output voltage at the main throttle sensor in the same way as input voltage inspection. Note the following.
- Disconnect the main throttle sensor connector and connect the harness adapter [A] between these connectors.
 Special Tool - Throttle Sensor Harness Adapter: 57001-1538
- Start the engine and warm it up thoroughly.
- Check idle speed to ensure the throttle opening is correct.

Idle Speed
 Standard: 1 300 ±50 r/min (rpm)

*If the idle speed is out of the specified range, adjust it (see Idle Speed Inspection in the Periodic Maintenance chapter).
- Turn off the ignition switch.
- Measure the output voltage of the sensor with the engine stopped, and with the connector joined.
- Turn the ignition switch ON.

Main Throttle Sensor Output Voltage
Connections to Adapter
 Meter (+) → R (sensor Y/W) lead
 Meter (–) → W (sensor BR/BK) lead

Standard:
 1.073 – 1.077 V DC (at idle throttle opening)
 4.29 – 4.49 V DC (at full throttle opening)

*If the output voltage is out of the standard, inspect the main throttle sensor resistance.
*If the output voltage is normal, check the wiring for continuity.

Wiring Connection
 ECU Connector [A] ——— Throttle Sensor Connector [B]
 Y/W lead (ECU terminal 7)
 BR/BK lead (ECU terminal 28)
*If the wiring is good, check the ECU for its ground and power supply (see ECU Power Supply Inspection).
3-44 FUEL SYSTEM (DFI)

Main Throttle Sensor (Service Code 11)

Resistance Inspection
- Turn the ignition switch OFF.
- Disconnect the main throttle sensor connector.
- Connect a digital meter [A] to the main throttle sensor connector [B].
- Measure the main throttle sensor resistance.

Main Throttle Sensor Resistance
Connections: BL lead [C] → BR/BK lead [D]
Standard: 4 ~ 6 kΩ

If the reading is out of the range, replace the throttle body assy.
If the reading is within the range, but the problem still exists, replace the ECU (see ECU Removal).

Main Throttle Sensor Circuit

1. ECU
2. Water-proof Joint E
3. Water-proof Joint D
4. Main Throttle Sensor

http://mototh.com
Inlet Air Pressure Sensor (Service Code 12)

CAUTION

Never drop the sensor, especially on a hard surface. Such a shock to the part can damage it.

Removal

- **Remove**:
 - Left Center Fairing (see Center Fairing Removal in the Frame chapter)
 - Disconnect the inlet air pressure sensor connector [A] and the vacuum hose [B].
 - Pull up the inlet air pressure sensor [C].

Installation

- **Install**:
 - Vacuum Hose
 - Inlet Air Pressure Sensor

Input Voltage Inspection

NOTE

- Be sure the battery is fully charged.
- The inspection is the same as “Input Voltage Inspection” of the main throttle sensor.

- Turn the ignition switch OFF.
- Remove the ECU (see ECU Removal). Do not disconnect the ECU connectors.
- Connect a digital voltmeter [A] to the connector [B] with the needle adapter set.

 Special Tool - Needle Adapter Set: 57001-1457

- Measure the input voltage with the engine stopped, and with the connectors joined.
- Turn the ignition switch ON.

Inlet Air Pressure Sensor Input Voltage Connections to ECU

- **Meter (+) → BL lead (terminal 10)**
- **Meter (−) → BR/BK lead (terminal 28)**

Standard: 4.75 – 5.25 V DC

★ If the reading is within the standard range, check the sensor output voltage.
★ If the reading is less than the standard range, remove the ECU and check the wiring between these connectors.
★ If the wiring is good, check the ECU for its ground and power supply (see ECU Power Supply Inspection).
3-46 FUEL SYSTEM (DFI)
Inlet Air Pressure Sensor (Service Code 12)

Output Voltage Inspection

NOTE
- The output voltage changes according to the local atmospheric pressure.
- Measure the output voltage at the ECU in the same way as input voltage inspection. Note the following.

Inlet Air Pressure Sensor Output Voltage

Connections to ECU
- Meter (+) → Y/BL lead (terminal 17)
- Meter (–) → BR/BK lead (terminal 14)

Usable Range: 3.74 – 4.26 V DC at the standard atmospheric pressure (101.32 kPa, 76 cmHg abs.)

- Turn the ignition switch OFF.
- If the output voltage is within the usable range, check the ECU for its ground, and power supply (see ECU Power Supply Inspection).
- If the output voltage is out of the usable range, remove the fuel tank and check the wiring. If the output voltage is 4.8 V, the ECU is normal.

- If the wiring is good, check the sensor for various vacuum.
- If the output voltage for various vacuum is normal, check the ECU for its ground, and power supply (see ECU Power Supply Inspection).
- Remove the inlet air pressure sensor [A] and disconnect the vacuum hose from the sensor.
- Do not disconnect the sensor connector.
- Connect an auxiliary hose [B] to the inlet air pressure sensor.
- Temporarily install the inlet air pressure sensor.
- Connect a commercially available digital meter [C], vacuum gauge [D], the fork oil level gauge [E] and the harness adapter to the inlet air pressure sensor.

Special Tools - Fork Oil Level Gauge: 57001-1290
Sensor Harness Adapter: 57001-1561

Inlet Air Pressure Sensor Output Voltage

Connection to Adapter
- Meter (+) → G (sensor Y/BL) lead
- Meter (–) → BK (sensor BR/BK) lead

- Turn the ignition switch ON.
- Measure the inlet air pressure sensor output voltage from various vacuum readings, while pulling the handle of the fork oil level gauge.
- Check the inlet air pressure sensor output voltage, using the following formula and chart.

Suppose:
- Pg: Vacuum Pressure (gauge) to Sensor
- Pl: Local Atmospheric Pressure (absolute) measured by a barometer
- Pv: Vacuum Pressure (absolute) to Sensor
- Vv: Sensor Output Voltage (v)
Inlet Air Pressure Sensor (Service Code 12)

then

\[P_v = P_l - P_g \]

For example, suppose the following data is obtained:

- \(P_g = 8 \text{ cmHg} \) (Vacuum gauge reading)
- \(P_l = 70 \text{ cmHg} \) (Varometer reading)
- \(V_v = 3.2 \text{ V} \) (Digital volt meter reading)

then

\[P_v = 70 - 8 = 62 \text{ cmHg (Abs)} \]

Plot this \(P_v \) (62 cmHg) at a point [1] on the chart and draw a vertical line through the point. Then, you can get the usable range [2] of the sensor output voltage.

Usable range = 3.04 \(-\) 3.49 V

Plot \(V_v \) (3.2 V) on the vertical line. \(\rightarrow \) Point [3].

Results: In the chart, \(V_v \) is within the usable range and the sensor is normal.

\(P_v = 24 \sim 55 \text{ cmHg} \)
Inlet Air Pressure Sensor (Service Code 12)

\[P_v = 55 - 86 \text{ cmHg} \]

- \(V_v \): Inlet Air Pressure Sensor Output Voltage (V) (Digital Meter Reading)
- \(P_v \): Throttle Vacuum Pressure (Absolute)
- \(P_s \): Standard Atmospheric Pressure (Absolute)
- ID: Idling
- TO: Throttle Full Open
- ST: Standard of Sensor Output Voltage (v)
- UR: Usable Range of Sensor Output Voltage (v)
Inlet Air Pressure Sensor (Service Code 12)

Inlet Air Pressure Sensor Circuit

1. ECU
2. Water-proof Joint E
3. Water-proof Joint D
4. Inlet Air Pressure Sensor
3-50 FUEL SYSTEM (DFI)

Inlet Air Temperature Sensor (Service Code 13)

Removal/Installation

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never drop the sensor, especially on a hard surface. Such a shock to the sensor can damage it.</td>
</tr>
</tbody>
</table>

- Remove the fuel tank (see Fuel Tank Removal).
- Disconnect the connector [A] from the inlet air temperature sensor.
- Remove the screw [B].
- Pull out the inlet air temperature sensor [C].
- Put the inlet air temperature sensor into the air cleaner housing.
- Tighten the screw securely.

Output Voltage Inspection

NOTE

- Be sure the battery is fully charged.
- The output voltage changes according to the inlet air temperature.

- Remove the ECU (see ECU Removal). Do not disconnect the ECU connectors.
- Connect a digital voltmeter to the ECU connector, using needle adapter set.
- Special Tool - Needle Adapter Set: 57001-1457
- Measure the sensor output voltage with the engine stopped and the connector joined.
- Turn the ignition switch ON.

Inlet Air Temperature Sensor Output Voltage

Connections to ECU Connector

- Meter (+) → Y lead (terminal 26)
- Meter (−) → BR/BK lead (terminal 28)

Standard:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Voltage (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20°C (68°F)</td>
<td>2.25 – 2.50 V</td>
</tr>
</tbody>
</table>

- Turn the ignition switch OFF.
- If the output voltage is out of the standard, remove the fuel tank and check the wiring. And if the output voltage is 4.8 V, the ECU is normal.
- If the output voltage is within the standard, check the ECU for its ground, and power supply (see ECU Power Supply Inspection).
- If the wiring is good, check the sensor resistance.
- Remove the needle adapter set, and apply silicone sealant to the seals of the connector for waterproofing.

Silicone Sealant (Kawasaki Bond: 56019-120) - Seals of ECU Connectors

http://mototh.com
Inlet Air Temperature Sensor (Service Code 13)

Sensor Resistance Inspection

- Remove the inlet air temperature sensor.
- Suspend the sensor [A] in a container of machine oil so that the heat-sensitive portion is submerged.
- Suspend a thermometer [B] with the heat-sensitive portion [C] located in almost the same depth with the sensor.

NOTE

○ The sensor and thermometer must not touch the container side or bottom.

- Place the container over a source of heat and gradually raise the temperature of the oil while stirring the oil gently for even temperature.
- Using a digital meter, measure the internal resistance of the sensor across the terminals at the temperatures shown in the table.

Inlet Air Temperature Sensor Resistance

<table>
<thead>
<tr>
<th>Standard</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°C (32°F)</td>
<td>5.4 – 6.6 kΩ</td>
</tr>
<tr>
<td>80°C (176°F)</td>
<td>0.29 – 0.39 kΩ</td>
</tr>
</tbody>
</table>

★ If the measurement is out of the range, replace the sensor.
★ If the measurement is within the specified, replace the ECU.

Inlet Air Temperature Sensor Circuit

1. ECU
2. Inlet Air Temperature Sensor
3. Water-proof Joint E
3-52 FUEL SYSTEM (DFI)

Water Temperature Sensor (Service Code 14)

Water Temperature Sensor Removal/Installation

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never drop the sensor, especially on a hard surface. Such a shock to the sensor can damage it.</td>
</tr>
</tbody>
</table>

- Drain the coolant (see Coolant Change in the Periodic Maintenance chapter).
- Disconnect the sensor connector [A], and unscrew the water temperature sensor [B].
- **Torque - Water Temperature Sensor**: 12 N·m (1.2 kgf·m, 106 in·lb)
- Apply grease to new O-ring on the water temperature sensor.
- Fill the engine with coolant and bleed the air from the cooling system (see Coolant Change in the Periodic Maintenance chapter).

Water Temperature Sensor Output Voltage Inspection

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be sure the battery is fully charged.</td>
</tr>
</tbody>
</table>

- Remove the ECU (see ECU Removal). Do not disconnect the connectors.
- Connect a digital voltmeter [A] to the ECU connector [B] with the needle adapter set.
- **Special Tool - Needle Adapter Set**: 57001-1457
- Measure the sensor output voltage with the engine stopped and the connector joined.
- **Turn the ignition switch ON**.

Water Temperature Sensor Output Voltage Connections to ECU

- Meter (+) → O lead (terminal 20)
- Meter (−) → BR/BK lead (terminal 28)

<table>
<thead>
<tr>
<th>Standard: about 2.80 ~ 2.97 V at 20°C (68°F)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The output voltage changes according to the coolant temperature in the engine.</td>
</tr>
</tbody>
</table>

- Turn the ignition switch OFF.
- ★If the output voltage is within the standard, check the ECU for its ground, and power supply (see ECU Power Supply Inspection).
- ★If the output voltage is out of the standard, check the wiring. And if the output voltage is 4.8 V, the ECU is normal.
- ★If the wiring is good, check the water temperature sensor resistance.
- Remove the needle adapter set, and apply silicone sealant to the seals of the connector for waterproofing.

Silicone Sealant (Kawasaki Bond: 56019-120) - Seals of ECU Connectors

http://mototh.com
Water Temperature Sensor (Service Code 14)

Water Temperature Sensor Circuit

1. ECU
2. Water Temperature Sensor
3. Water-proof Joint E
4. Meter Unit

Sensor Resistance Inspection
- Remove the water temperature sensor (see Water Temperature Sensor Removal/Installation).
- Refer to Water Temperature Sensor Inspection in the Electrical System chapter.
Start the engine and switch the diagnosis mode to Dealer 1 mode to know all the problem that the DFI system has at the time of self-diagnosis. If the engine cannot be started, the self-diagnosis system does not detect dynamic condition of the crankshaft sensor. In this case, turn off the ignition switch and turn it on again to enter the Dealer 2 mode. In this mode, the system tells all the troubles which the DFI system had in both static and dynamic conditions.

Crankshaft Sensor Removal/Installation
・See the Ignition System section in the Electrical System chapter.

Crankshaft Sensor Inspection
○The crankshaft sensor has no power source, and when the engine stops, the crankshaft sensor generates no signals.
・Crank the engine and measure the peak voltage of the crankshaft sensor (see Crankshaft Sensor Inspection in the Electrical System) in order to check the sensor.
・Check the wiring for continuity, using the following diagram.

Crankshaft Sensor Circuit

1. ECU
2. Crankshaft Sensor
Speed Sensor (Service Code 24, 25)

Speed Sensor Removal/Installation
• See the Switches and Sensors section in the Electrical System chapter.

Speed Sensor Inspection
• See Speed Sensor Inspection section in the Electrical System chapter.

Speed Sensor Input Voltage Inspection

NOTE
○ Be sure the battery is fully charged.
• Turn the ignition switch OFF.
• Disconnect the speed sensor connector and connect the harness adapter [A] between the harness connector and speed sensor connector.
• Connect a digital meter to the harness adapter leads.
 Special Tool - Throttle Sensor Setting Adapter #1: 57001-1400
• Measure the sensor input voltage with the engine stopped, and with the connector joined.
• Turn the ignition switch ON.

Speed Sensor Input Voltage Connection to Adapter
 Meter (+) → BL (sensor P) lead [C]
 Meter (−) → BK (sensor BK/Y) lead [D]

 Standard: About 9 – 11 V DC at Ignition Switch ON

★ If the reading is out of the range, check the wiring (see wiring diagram in this section), and meter (see Electronic Combination Meter Unit Inspection in the Electrical System chapter).
★ If the reading is good, check the output voltage.
• Turn the ignition switch OFF.

Speed Sensor Output Voltage Inspection
• Before this inspection, inspect the input voltage (see Speed Sensor Input Voltage Inspection).

NOTE
○ Be sure the battery is fully charged.
• Turn the ignition switch OFF.
3-56 FUEL SYSTEM (DFI)

Speed Sensor (Service Code 24, 25)

- Disconnect the speed sensor connector and connect the harness adapter [A] between the harness connector and speed sensor connector.
- Connect a digital meter to the harness adapter leads.

Special Tool - Throttle Sensor Setting Adapter #1: 57001-1400

- Measure the sensor output voltage with the engine stopped, and with the connector joined.
- Turn the ignition switch ON.

Speed Sensor Output Voltage at Sensor Connections to Adapter

- Meter (+) → Y/W (sensor LG/R) lead [C]
- Meter (−) → BK (sensor BK/Y) lead [D]

Standard: About 0.05 ~ 0.07 V DC

NOTE

- If you rotate the engine sprocket, the output voltage will be increased.
- If the reading is out of the range, check the speed sensor operation (see Speed Sensor Inspection in the Electrical System chapter) and the wiring to ECU (see wiring diagram in this section).
- If the reading, speed sensor operation and wiring are good, check the ECU for its ground, and power supply (see ECU Power Supply Inspection).

Speed Sensor Circuit

1. ECU
2. Speed Sensor
3. Meter Unit
4. Water-proof Joint B
5. Frame Ground
6. Joint Connector

![Speed Sensor Circuit Diagram](http://mototh.com)
Vehicle-down Sensor (Service Code 31)

Vehicle-down Sensor Removal

CAUTION
Never drop the down-sensor, especially on a hard surface. Such a shock to the sensor can damage it.

- Remove:
 - Bolts [A]
 - Connection and Vehicle-down Sensor [B]

Vehicle-down Sensor Installation
- The UP mark [A] of the sensor should face upward.

WARNING
Incorrect installation of the vehicle-down sensor could cause sudden loss of engine power. The rider could lose balance during certain riding situations like leaning over in a turn with the potential for an accident resulting in injury or death. Ensure that the down sensor is held in place by the sensor brackets.

Vehicle-down Sensor Inspection

NOTE
- Be sure the battery is fully charged.

- Connect a digital volt meter [C] to the connector [B] of the vehicle-down sensor [A] with the needle adapter set [D].

Vehicle-down Sensor Power Source Voltage

Connections to Sensor
- Meter (+) → BL lead [D]
- Meter (−) → BR/BK lead [E]

- Turn the ignition switch ON, and measure the power source voltage with the connector joined.

Vehicle-down Sensor Input Voltage
- Standard: 4.75 – 5.25 V DC

- Turn the ignition switch OFF.
- ★ If the reading of input voltage is less than the standard, check the ECU for its ground, power supply and wiring shorted.
- ★ If the power source is normal, check the output voltage.
Vehicle-down Sensor (Service Code 31)

- Remove the sensor.
- Connect a digital volt meter [A] to the connector with needle adapter set [B].

Special Tool - Needle Adapter Set: 57001-1457

Vehicle-down Sensor Output Voltage

Connections to Sensor

- Meter (+) → Y/G lead [E]
- Meter (–) → BR/BK lead [F]

- Hold the sensor vertically.
- Turn the ignition switch ON, and measure the output voltage with the connector joined.
- Tilt the sensor 60° – 70° or more [C] right or left, then hold the sensor almost vertical with the arrow mark pointed up [D], and measure the output voltage.

Output Voltage at Sensor

- Standard: with sensor tilted 60° – 70° or more right or left: 0.65 – 1.35 V
- with sensor arrow mark pointed up: 3.55 – 4.45 V

NOTE

- If you need to test again, turn the ignition switch OFF, and then ON.

- Turn the ignition switch OFF.
- Remove the needle adapter set, and apply silicone sealant to the seals of the connector for waterproofing.

Silicone Sealant (Kawasaki Bond: 56019-120) - Seals of Vehicle-down Sensor Connector

- If the output voltage is normal, the wiring is suspect. Check the wiring.
- If the wiring is good, check the ECU for its ground and power supply (see ECU Power Supply Inspection).
- If the output voltage is out of the specified, replace the vehicle-down sensor.
Vehicle-down Sensor (Service Code 31)

Vehicle-down Sensor Circuit

1. ECU
2. Water-proof Joint E
3. Vehicle-down Sensor
4. Water-proof Joint D
3-60 FUEL SYSTEM (DFI)
Subthrottle Sensor (Service Code 32)

Subthrottle Sensor Removal/Adjustment

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not remove or adjust the subthrottle sensor [A] since it has been adjusted and set with precision at the factory. Never drop the sensor, especially on a hard surface. Such a shock to the sensor can damage it.</td>
</tr>
</tbody>
</table>

Subthrottle Sensor Input Voltage Inspection

NOTE
- Be sure the battery is fully charged.
- Remove the fuel tank (see Fuel Tank Removal).
- Turn the ignition switch OFF.
- Disconnect the subthrottle sensor connector and connect the harness adapter [A] between these connectors.
- Connect a digital meter to the harness adapter lead.
- Special Tool - Throttle Sensor Harness Adapter: 57001-1400
- Measure the sensor input voltage with the engine stopped and with the connector joined.
- Turn the ignition switch ON.

Subthrottle Sensor Input Voltage Connections to Adapter

- Meter (+) → BL (sensor BL) lead
- Meter (–) → BK (sensor BR/BK) lead

Standard: 4.75 – 5.25 V DC

- Turn the ignition switch OFF.
- If the input voltage is normal, check the sensor output voltage.
- If the input voltage is less than the standard, remove the ECU and check the wiring between these connectors.

Wiring Connection

- ECU Connector [A] ←→ Subthrottle Sensor Connector [B]
 - BL lead (terminal 10)
 - BR/BK lead (terminal 28)

- If the wiring is good, check the ECU for its ground and power supply (see ECU Power Supply Inspection).
Subthrottle Sensor (Service Code 32)

Subthrottle Sensor Output Voltage Inspection

- Remove the fuel tank (see Fuel Tank Removal).
- Measure the output voltage at the subthrottle sensor in the same way as input voltage inspection. Note the following.
- Disconnect the subthrottle sensor connector and (black) connect the harness adapter [A] between these connectors.

Special Tool - Throttle Sensor Harness Adapter: 57001-1400

- Measure the output voltage of the sensor with the engine stopped, and with the connector joined.
- Turn the ignition switch ON.
- Measure the output voltage when the subthrottle valve is fully opened or completely closed by hand.

Subthrottle Sensor Output Voltage

Connections to Adapter

- Meter (+) → Y (sensor BL/W) lead
- Meter (−) → BK (sensor BR/BK) lead

Standard:

0.4 ~ 0.6 V DC (at idle throttle opening)
3.625 ~ 3.775 V DC (at full throttle opening)

If the output voltage is out of the standard, inspect the subthrottle sensor resistance.
If the output voltage is normal, check the wiring for continuity.

Wiring Connection

ECU Connector [A] ——— Subthrottle Sensor Connector [B]

BL/W lead (terminal 7)
BR/BK lead (terminal 28)

If the wiring is good, check the ECU for its ground and power supply (see ECU Power Supply Inspection).
3-62 FUEL SYSTEM (DFI)

Subthrottle Sensor (Service Code 32)

Subthrottle Sensor Resistance Inspection
- Turn the ignition switch OFF.
- Disconnect the subthrottle sensor connector.
- Connect a digital meter [A] to the subthrottle sensor connector [B].
- Measure the subthrottle sensor resistance.

Throttle Sensor Resistance
Connections: BL lead [C] ←→ BK lead [D]
Standard: 4 – 6 kΩ

If the reading is out of the range, replace the throttle body assy.
If the reading is within the range, but the problem still exists, replace the ECU (see ECU section).

Subthrottle Sensor Circuit

1. ECU
2. Water-proof Joint E
3. Water-proof Joint D
4. Subthrottle Sensor
Oxygen Sensor-not activated (Service Code 33) - Europe Model

Oxygen Sensor Removal/Installation
• Refer to Switches and Sensors section in the Electrical System chapter.

Oxygen Sensor Inspection
• Warm up the engine thoroughly until the radiator fan starts.
• Turn the ignition switch OFF.
• Remove:
 Left Center Fairing (see Center Fairing Removal in the Frame chapter)
 Sprocket Cover (see Engine Sprocket Removal in the Final Drive chapter)
• Connect a digital voltmeter [A] to the oxygen sensor connector [B] (main harness side), using the needle adapter set [C].

Special Tool - Needle Adapter Set: 57001-1457

Oxygen Sensor Output Voltage
Connections to Oxygen Sensor Connector
 Meter (+) → BL/Y lead
 Meter (−) → BR/BK lead

• Remove the air switching valve hoses from the fitting.
• Install the suitable plugs [A] on the fitting [B] and shut off the secondary air.

• Turn the ignition switch ON.
• Start the engine, and let it idle.
• Measure the output voltage of the sensor with the connector joined.

Oxygen Sensor Output Voltage (with Plugs)
Standard: 0.7 V or more

• Next, remove the plugs from the fitting [A] with idling.
3-64 FUEL SYSTEM (DFI)

Oxygen Sensor-not activated (Service Code 33) - Europe Model

- Measure the output voltage of the sensor with the connector joined.

Oxygen Sensor Output Voltage (without Plugs)

- **Standard:** 0.2 V or less

- If the reading is within range (with plugs: 0.7 V or more, without plugs: 0.2 V or less), the oxygen sensor is good.
- If the reading is without range, replace the oxygen sensor.

Oxygen Sensor Circuit

1. ECU
2. Oxygen Sensor
3. Water-proof Joint E
4. Water-proof Joint D
5. Oxygen Sensor Heater Fuse 10 A
6. Main Fuse 30 A
7. Battery
8. Frame Ground
9. Joint Connector

http://mototh.com
Stick Coils (#1, #2: Service Code 51, 52)

Stick Coil #1: Ignition Coil (Service Code 51)
Stick Coil #2: Ignition Coil (Service Code 52)

Stick Coil Removal/Installation

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never drop the stick coils, especially on a hard surface. Such a shock to the stick coil can damage it.</td>
</tr>
</tbody>
</table>

- Refer to the Ignition System section in the Electrical System chapter.

Stick Coil Input Voltage Inspection

NOTE
- Be sure the battery is fully charged.

- Turn the ignition switch OFF.
- Remove the ECU (see ECU Removal). Do not disconnect the ECU connector.
- Connect a digital voltmeter [A] as shown, with the needle adapter set [B].
- Measure the input voltage to each primary winding of the ignition coils with the engine stopped, and with the connectors joined.
- Turn the ignition switch ON.

Stick Coil Input Voltage at ECU

Connections for Stick Coil #1
- Meter (+) → BK lead (terminal 43)
- Meter (–) → BK/Y lead (terminal 51)

Connections for Stick Coil #2
- Meter (+) → BK/G lead (terminal 52)
- Meter (–) → BK/Y lead (terminal 51)

Input Voltage at ECU
- Standard: Battery Voltage (12.8 V or more)

★ If the reading is out of the standard, check the wiring (see next wiring diagram).
★ If the reading is good, the input voltage is normal. Crank the engine, and check the peak voltage of the stick coils (see Stick Coil Primary Peak Voltage in the Electrical System chapter) in order to check the primary coils.
3-66 FUEL SYSTEM (DFI)
Stick Coils (#1, #2: Service Code 51, 52)

Stick Coil Circuit

1. ECU
2. Water-proof Joint C
3. Stick Coils
4. Engine Stop Switch
5. Ignition Switch
6. Ignition Fuse 10 A
7. Main Fuse 30 A
8. Battery
9. Frame Ground
10. Joint Connector
Radiator Fan Relay (Service Code 56)

Radiator Fan Relay Removal/Installation
- Radiator fan relay is built in the relay box.
- Remove the relay box (see Relay Box Removal in the Electrical System chapter).

Radiator Fan Relay Inspection
- See Relay Circuit Inspection in the Electrical System chapter.
- Remove the relay box and ECU (see ECU Removal). Do not disconnect the relay box and ECU connectors. Check the wiring for continuity, using the following diagram.
- If wiring and radiator fan relay are good, check the ECU for its ground, and power supply (see ECU Power Supply Inspection). If the ground and power supply are good, replace the ECU.

Radiator Fan Relay Circuit

1. ECU
2. Water-proof Joint C
3. Water-proof Joint B
4. Radiator Fan Fuse 15 A
5. Relay Box
6. Radiator Fan Relay
7. Main Fuse 30 A
8. Battery
9. Frame Ground
10. Joint Connector

http://mototh.com
Subthrottle Valve Actuator (Service Code 62)

Subthrottle Valve Actuator Removal

CAUTION
Do not remove the subthrottle valve actuator [A] since it has been adjusted and set with precision at the factory.
Never drop the actuator, especially on a hard surface. Such a shock to the actuator can damage it.

Subthrottle Valve Actuator Audible Inspection

NOTE
○ Be sure the battery is fully charged.

- Turn the ignition switch ON and ensure that the actuator valves open and close (make light sounds) several times within seconds, and then close at the idle throttle opening position.
- Turn the ignition switch OFF.

★ If the actuator does not work as described above, do the visual inspection.

Subthrottle Valve Actuator Visual Inspection

- Remove the throttle body assy (see Throttle Body Assy Removal).
- Turn the ignition switch ON.
- Check to see that all the subthrottle valves [A] open and close smoothly.

★ If the subthrottle valves do not operate, check the actuator internal resistance (see Subthrottle Valve Actuator Resistance Inspection).

Subthrottle Valve Actuator Resistance Inspection

- Turn the ignition switch OFF.
- Remove the throttle body assy (see Throttle Body Assy Removal).
- Disconnect the subthrottle valve actuator connector [A].

- Connect a digital meter to the subthrottle valve actuator connector [A].
- Measure the subthrottle valve actuator resistance.

Subthrottle Valve Actuator Resistance

Connections:

Standard:
- About 5.5 ~ 7.5 kΩ

Special Tool - Hand Tester: 57001-1394

★ If the reading is out of the range, replace the actuator along with the throttle body assy.
★ If the reading is within the range, check the input voltage (see Subthrottle Valve Actuator Input Voltage Inspection).
Subthrottle Valve Actuator (Service Code 62)

Subthrottle Valve Actuator Input Voltage Inspection

NOTE

- Be sure the battery is fully charged.
- Turn the ignition switch OFF.
- Connect the peak voltage adapter [A] and a digital meter [B] to the connector [C], using the needle adapter set [D].

Special Tools - Peak Voltage Adapter: 57001-1415
 - Type: KEK-54-9-B
 - Brand: KOWA SEIKI

Needle Adapter Set: 57001-1457

Subthrottle Valve Actuator Input Voltage Connections to Harness Connector

(I) Meter (+) → BK/BL lead [1]
 Meter (−) → P lead [2]

(II) Meter (+) → W/BL lead [3]
 Meter (−) → G/Y lead [4]

- Measure the actuator input voltage with the engine stopped, and with the connector joined.
- Turn the ignition switch ON.

Input Voltage at Actuator
 - **Standard:** about 8.5 – 10.5 V DC

- If the reading is within the standard but the actuator doesn’t operate, replace it.
- If the reading is out of the range, check the wiring to ECU (see wiring diagram in this section).
- If the wiring is good, check the ECU for its ground and power supply (see ECU Power Supply Inspection).

Subthrottle Valve Actuator Circuit

1. ECU
2. Subthrottle Valve Actuator
3-70 FUEL SYSTEM (DFI)

Air Switching Valve (Service Code 64)

Air Switching Valve Removal/Installation
- Refer to Clean Air System section in the Engine Top End chapter.

Air Switching Valve Inspection
- Refer to Air Switching Valve section in the Electrical System chapter.
- Remove the fuel tank and check the wiring continuity, using the following diagram.

Air Switch Valve Circuit

1. ECU
2. Air Switching Valve
3. Water-proof Joint C
4. Ignition Switch
5. Water-proof Joint A
6. ECU Fuse 15 A
7. ECU Main Relay
8. Relay Box
9. Main Fuse 30 A
10. Battery
11. Frame Ground
12. Joint Connector
Oxygen Sensor Heater (Service Code 67) - Europe Model

Oxygen Sensor Heater Removal/Installation
The oxygen sensor heater is built in the oxygen sensor. So, the heater itself cannot be removed. Remove the oxygen sensor (see Oxygen Sensor Removal in the Electrical System chapter).

Oxygen Sensor Heater Inspection
• Remove the engine sprocket cover (see Engine Sprocket Removal in the Final Drive chapter).
• Disconnect the oxygen sensor lead connector [A].

• Set the hand tester [A] to the \(\times 1 \ \Omega \) range and connect it to the terminals in the oxygen sensor lead connector [B].
 Black [C]
 Black [D]
Special Tool - Hand Tester: 57001-1394

Oxygen Sensor Resistance
Standard: 11.7 - 14.5 \(\Omega \) at 20°C (68°F)
★ If the tester reading is not as specified, replace the oxygen sensor with a new one.
★ If the tester reading is specified, check the power source voltage inspection.

NOTE
○ Be sure the battery is fully charged.
• Connect a digital voltmeter [A] to the oxygen sensor connector [B], using the needle adapter [C].
Special Tool - Needle Adapter Set: 57001-1457
• Measure the power source voltage with the engine stopped, and with the oxygen sensor connector joined.

Oxygen Sensor Power Source Voltage
Connections to Oxygen Sensor Connector
Tester (+) → W/Y lead [D]
Tester (−) → Battery (−) Terminal [E]
Standard: Battery Voltage
Oxygen Sensor [F]
★ If the reading is incorrect, check the following.
 Battery
 Main Fuse 30 A
 Oxygen Sensor Heater Fuse 10 A
★ If the reading is good, the power source voltage is normal. Inspect the Red/Black lead between the oxygen sensor connector and the ECU for continuity, using the following diagram.
★ If the wiring is good, inspect the ECU for its ground, and power supply (see ECU Power Supply Inspection). If the ground and power supply are good, replace the ECU.
Oxygen Sensor Circuit

1. ECU
2. Oxygen Sensor
3. Water-proof Joint E
4. Water-proof Joint D
5. Oxygen Sensor Heater Fuse 10 A
6. Main Fuse 30 A
7. Battery
8. Frame Ground
9. Joint Connector

http://mototh.com
Oxygen Sensor-Incorrect Output Voltage (Service Code 94) - Europe Model

Oxygen Sensor Removal/Installation
- Refer to Oxygen Sensor Removal/Installation in the Electrical System chapter.

Oxygen Sensor Inspection
- Warm up the engine thoroughly until the radiator fan starts.
- Turn the ignition switch OFF.
- Remove:
 - Left Center Fairing (see Center Fairing Removal in the Frame chapter)
 - Sprocket Cover (see Engine Sprocket Removal in the Final Drive chapter)
- Connect a digital voltmeter [A] to the oxygen sensor connector [B] (main harness side), using the needle adapter set [C].

Special Tool - Needle Adapter Set: 57001-1457

Oxygen Sensor Output Voltage
Connections to Oxygen Sensor Connector
- Meter (+) → BL/Y lead
- Meter (−) → BR/BK lead

- Remove the air switching valve hoses from the fitting.
- Install the suitable plugs [A] on the fitting [B] and shut off the secondary air.

- Turn the ignition switch ON.
- Start the engine, and let it idle.
- Measure the output voltage of the sensor with the connector joined.

Oxygen Sensor Output Voltage (with Plugs)
Standard: 0.7 V or more

- Next, remove the plugs from the fitting [A] with idling.
3-74 FUEL SYSTEM (DFI)

Oxygen Sensor-Incorrect Output Voltage (Service Code 94) - Europe Model

- Measure the output voltage of the sensor with the connector joined.

Oxygen Sensor Output Voltage (without Plugs)

Standard: 0.2 V or less

- If the reading is within range (with plugs: 0.7 V or more, without plugs: 0.2 V or less), the oxygen sensor is good.
- If the reading is without range, inspect the engine and fuel supply system.
- If the engine and fuel supply system good, replace the oxygen sensor.

Oxygen Sensor Circuit

![Oxygen Sensor Circuit Diagram]

1. ECU
2. Oxygen Sensor
3. Water-proof Joint E
4. Water-proof Joint D
5. Oxygen Sensor Heater Fuse 10 A
6. Main Fuse 30 A
7. Battery
8. Frame Ground
9. Joint Connector
FI Indicator Light (LED)

Inspection Flow Chart

1. Turn the ignition SW ON.
 - Repair or replace the meter or wiring
 - NG
 - Does the light (LED) go off after 1 ~ 2 seconds?
 - Yes (goes on)
 - Does the light (LED) go off after 10 ~ 20 seconds?
 - No (stays on)
 - DFI and ignition systems are abnormal.
 - End of inspection (Go to self-diagnosis.)
 - Yes (goes off)
 - DFI and ignition systems are considered to be normal.
 - Run the engine with idling.
 - No (stays on)
 - Turn the ignition SW OFF.

2. Does the light (LED) go off after 1 ~ 2 seconds?
 - Yes (goes on)
 - Check the light (LED) and the wiring.
 - Good
 - No (Flashes once then goes off or until)

3. End of inspection (Go to self-diagnosis.)

4. Ask the rider if the problem occurs again.
 - Yes (occurs)
 - Replace the ECU.
 - No
 - DFI and ignition systems are normal.
3-76 FUEL SYSTEM (DFI)

FI Indicator Light (LED)

FI Indicator Light (LED) Inspection
- Remove the meter unit (see Meter Unit Removal in the Electrical System chapter).
- Using two auxiliary leads, supply battery power to the FI indicator light (LED) [A].
 - 12 V Battery [B]

FI Indicator Light (LED) Check
- Connector: Meter Connector [C] (disconnected)
- Connection:
 - W/BK Lead Terminal [1] of the Meter → Battery (+) Terminal
 - BR/R Lead Terminal [16] of the Meter → Battery (–) Terminal
- Criterion: The light (LED) should light.

★ If the light (LED) does not go on, replace the meter unit.

FI Indicator Light (LED) Circuit

1. ECU
2. Water-proof Joint C
3. Ignition Switch
4. Meter Unit
5. Ignition Fuse 10 A
6. Main Fuse 30 A
7. Battery
8. Frame Ground
9. Joint Connector

http://mototh.com
ECU

CAUTION

Never drop the ECU, especially on a hard surface. Such a shock to the ECU can damage it.

ECU Removal

- Remove:
 - Seat (see Seat Removal in the Frame chapter)
 - Grab Rails [A] (see Seat Covers Removal in the Frame chapter)
 - Center Seat Cover [B] (see Seat Covers section in the Frame chapter)
 - Seat Covers [C] (see Seat Covers Removal in the Frame chapter)
 - Rear Fender Rear Bolts [D]

- Pull down the rear fender rear [A].

- Remove the ECU bracket bolts [A].
- Take the ECU [B] out along with the harness.
- Disconnect the ECU lead connectors.

ECU Installation

- Fit [A] the bracket on the ECU as shown.
ECU Power Supply Inspection

- Visually inspect the terminals [A] of the ECU connectors.
- If the connector is clogged with mud or dust, blow it off with compressed air.
- Replace the main harness if the terminals of the main harness connectors are cracked, bent, or otherwise damaged.
- Replace the ECU if the terminals of the ECU connectors are cracked, bent, or otherwise damaged.

- With the ECU connectors [A] connected, check the following ground lead for continuity with the ignition switch OFF, using a tester and needle adapter set.
 - Battery [B]
 - Tester [C]

Special Tool - Needle Adapter Set: 57001-1457

ECU Grounding Inspection

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Battery (–) Terminal</th>
<th>Engine Ground</th>
<th>Battery (–) Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>34, 50, or 51 (BK/Y)</td>
<td>0 Ω</td>
<td>0 Ω</td>
<td></td>
</tr>
</tbody>
</table>

If no continuity, check the connector, the engine ground lead, or main harness, and repair or replace them if necessary.

- Check the ECU power source voltage with a digital meter [A].
 - Position the terminal in accordance with terminal numbers of ECU connectors [B] in this chapter figure.
 - Battery [C]

ECU Power Source Inspection

Meter Connections:

<table>
<thead>
<tr>
<th>Between Terminal 16 (BR/W) and Battery (–) Terminal</th>
<th>Terminal 16 (BR/W): 0 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Terminal 17 (W/BK) and Battery (–) Terminal</td>
<td>Terminal 17 (W/BK): Battery Voltage (12.6 V or more)</td>
</tr>
<tr>
<td>Ignition Switch OFF:</td>
<td>Ignition Switch ON:</td>
</tr>
<tr>
<td>Both: Battery Voltage (12.6 V or more)</td>
<td></td>
</tr>
</tbody>
</table>

If the meter does not read as specified, check the following:
- Main Fuse 30 A (see Fuse section in the Electrical System chapter)
- ECU Fuse 15 A (see Fuse Inspection in the Electrical System chapter)
- ECU Main Relay (see Relay Circuit Inspection in the Electrical System chapter)
- Power Source Wiring (see wiring diagram below)

If the inspection checks good, the ECU is damaged. Replace the ECU. The ECU itself cannot be checked or serviced.

http://mototh.com
ECU Power Source Circuit

1. ECU
2. Water-proof Joint C
3. Ignition Switch
4. Water-proof Joint A
5. ECU Main Fuse 15 A
6. ECU Main Relay
7. Relay Box
8. Main Fuse 30 A
9. Battery
10. Frame Ground
11. Joint Connector
3-80 FUEL SYSTEM (DFI)

Fuel Line

Fuel Pressure Inspection

NOTE
- This inspection can determine which trouble the DFI system has, mechanical or electrical trouble.
- It is preferable to measure the fuel pressure while running the motorcycle just when trouble occurred in order to know symptom well.
- Be sure the battery is fully charged.

- Remove the fuel tank (see Fuel Tank Removal).
- Be sure to place a piece of cloth around the fuel hose joint and the delivery pipe.
- Insert a minus screw driver [A] into the slit on the joint lock [B].
- Turn the driver to disconnect the joint lock.
- Remove the fuel hose [C].

WARNING
Be prepared for fuel spillage; any spilled fuel must be completely wiped up immediately.
When the fuel hose is disconnected, fuel spills out from the hose and the pipe because of residual pressure. Cover the hose connection with a piece of clean cloth to prevent fuel spillage.

- Install the fuel pressure gauge adapter [A] and fuel hoses between the fuel pump outlet pipe [B] and the delivery pipe [C].
- Connect the pressure gauge [D] to the fuel pressure gauge adapter.

Special Tools - Oil Pressure Gauge, 5 kgf/cm²: 57001-125
Fuel Pressure Gauge Adapter: 57001-1593
Fuel Hose: 57001-1607

WARNING
Do not try to start the engine with the fuel hoses disconnected.

- Temporarily, install the fuel tank [E].
 Clamps [F]
Fuel Line

• Turn the ignition switch ON. The fuel pump will turn for 3 seconds, and then stop.

CAUTION

Do not drive the fuel pump without the fuel in the fuel tank.

• Measure the fuel pressure with the engine stopped.

Fuel Pressure

Right after Ignition Switch ON, with pump running:

| Standard: 323 kPa (3.3 kgf/cm², 47 psi) |

After 3 seconds from Ignition Switch ON, with pump stopped:

| Standard: 265 kPa (2.7 kgf/cm², 38 psi) (residual fuel pressure) |

The system should hold the residual pressure about 30 seconds.

• Start the engine, and let it idle.

• Measure the fuel pressure with the engine idling.

Fuel Pressure (Idling)

| Standard: 333 kPa (3.4 kgf/cm², 48 psi) |

NOTE

The gauge needle will fluctuate. Read the pressure at the average of the maximum and minimum indications.

If the fuel pressure is normal, the fuel circulation system (fuel pump, pressure regulator, and fuel passage) is no faults. Check the DFI electronic control system (injectors, sensors, crankshaft sensor, and ECU).

If the fuel pressure is much lower than specified, check the following:

- Fuel Line Leakage
- Fuel Pump Operation (check the sound of the pump)
- Amount of Fuel Flow (see Fuel Flow Rate Inspection)

If the fuel pressure is much higher than specified, check the following:

- Delivery Pipe Clogging
- Injector Clogging

• Remove the fuel pressure gauge and adapter.

• Install the fuel tank (see Fuel Tank Installation).
3-82 FUEL SYSTEM (DFI)

Fuel Line

Fuel Flow Rate Inspection

NOTE

○ Be sure the battery is fully charged.

WARNING

Gasoline is extremely flammable and can be explosive under certain conditions. Make sure the area is well-ventilated and free from any source of flame or sparks; this includes any appliance with a pilot light. Do not smoke. Turn the ignition switch OFF. Be prepared for fuel spillage; any spilled fuel must be completely wiped up immediately.

- Turn the ignition switch, and engine stop switch OFF.
- Wait until the engine cools down.
- Prepare a plastic hose of the inside diameter 7.5 mm (0.30 in.) and a measuring cylinder.
- Remove the fuel tank bolt (see Fuel Tank Removal).
- Open the fuel tank cap [A] to lower the pressure in the tank.

WARNING

Be prepared for fuel spillage; any spilled fuel must be completely wiped up immediately. When the fuel hose is disconnected, fuel spills out from the hose and the pipe because of residual pressure. Cover the hose connection with a piece of clean cloth to prevent fuel spillage.

- Connect the plastic hose [A] to the fuel pump outlet pipe.
- Secure the plastic hose with a clamp [B].
- Run the other side of the plastic hose into the measuring cylinder [C].

WARNING

Wipe off spilled out fuel immediately. Be sure to hold the measuring cylinder vertical.

- Temporarily install the fuel tank and close the fuel tank cap.
- With the engine stopped, turn the ignition switch ON. The fuel pump should operate for 3 seconds, and then should stop. Repeat this several times until the plastic hose is filled with fuel.
Fuel Line

CAUTION

Do not drive the fuel pump without the fuel in the fuel tank.

• Measure the discharge for 3 seconds with the plastic hose filled with fuel.
 ○ Repeat this operation several times.

Amount of Fuel Flow

 Standard: 60 mL or more for 3 seconds

★ If the fuel flow is much less than the specified, check the battery condition (see Battery section in the Electrical System chapter). If the battery is good, replace the fuel pump.

• After inspection, install the fuel tank. (see Fuel Tank Installation).

• Start the engine and check for fuel leakage.
Fuel Pump

Fuel Pump Removal

CAUTION

Never drop the fuel pump, especially on a hard surface. Such a shock to the pump can damage it.

WARNING

Gasoline is extremely flammable and can be explosive under certain conditions. Make sure the area is well-ventilated and free from any source of flame or sparks; this includes any appliance with a pilot light. Do not smoke. Turn the ignition switch OFF. Disconnect the battery (–) terminal.

To make fuel spillage minimum, draw the fuel out from the fuel tank when the engine is cold. Be prepared for fuel spillage; any spilled fuel must be completely wiped up immediately.

- Draw the fuel out from the fuel tank with a commercially available electric pump.
- Remove the fuel tank (see Fuel Tank Removal).
- Be careful of fuel spillage from the fuel tank since fuel still remains in the fuel tank and fuel pump. Plug the fuel pipe of the fuel tank.
- Turn the fuel tank upside down.
- Remove:
 - Fuel Pump Bolts [A]
 - Fuel Pump [B] and gasket
- Discard the fuel pump gasket.

CAUTION

Do not pull the lead of the fuel pump. If they are pulled, the lead terminals may be damaged.

Fuel Pump Installation

- Remove dirt or dust from the fuel pump [A] by lightly applying compressed air.
Fuel Pump

- Replace the fuel pump gasket [A] with a new one.

- Apply a non-permanent locking agent to the threads of the fuel pump bolts.
- Tighten the fuel pump bolts to a snug fit, tighten them alternating diagonally.

 Torque - Fuel Pump Bolts: 9.8 N·m (1.0 kgf·m, 87 in·lb)
- Tighten the pump bolts again alternating diagonally to check the tightness.

Fuel Pump Operation Inspection

 NOTE
 ○ Be sure the battery is fully charged.
 ○ Just listen to the pump sound in the fuel tank to confirm pump operation.

- Turn the ignition switch ON and make sure that the fuel pump operates (make light sounds) for 3 seconds, and then stops.
- Turn the ignition switch OFF.
 ★ If the pump does not work as described above, inspect the operating voltage.

Fuel Pump Operating Voltage Inspection

 NOTE
 ○ Be sure the battery is fully charged.

- Turn the ignition switch OFF.
- Remove the left side cover (see Side Cover Removal in the Frame chapter).
3-86 FUEL SYSTEM (DFI)

Fuel Pump

- Connect the hand tester (25 V DC) to the fuel pump connector [A] with needle adapter set.

 Special Tools - Hand Tester: 57001-1394
 Needle Adapter Set: 57001-1457

 ○ Measure the operating voltage with the engine stopped, and with the connector joined.
 ○ Turn the ignition switch ON.
 ○ The tester needle should indicate battery voltage for 3 seconds, and then 0 V.

 Pump Operating Voltage at Pump
 Connections to Pump Connectors
 Tester (+) → W/R Lead
 Tester (−) → BK/Y Lead
 Operating Voltage at Pump Connector
 Standard: Battery Voltage (12.8 V or more) for 3 seconds, and then 0 V.

 ★ If the reading stays on battery voltage, and never shows 0 V. Check the ECU and fuel pump relay.
 ★ If the voltage is in specification, but the pump doesn’t work, replace the pump.
 ★ If there is still no battery voltage, check the pump relay (see Relay Box section in the Electrical System chapter).

 Pressure Regulator Removal
 ○ The pressure regulator [A] is built into the fuel pump [B] and cannot be removed.

 Pump Screen, Fuel Filter Cleaning
 ○ The fuel filter [A] is built into the pump and cannot be cleaned or checked.
 ★ If the fuel filter is suspected of clogging or being damaged, replace it with the fuel pump as a set.
Fuel Pump

Fuel Pump Circuit

1. ECU
2. Water-proof Joint C
3. Engine Stop Switch
4. Ignition Switch
5. Ignition Fuse 10 A
6. Fuel Pump Relay
7. Relay Box
8. Main Fuse 30 A
9. Battery
10. Frame Ground
11. Fuel Pump
3-88 FUEL SYSTEM (DFI)

Fuel Injectors

Removal/Installation
● Refer to the Throttle Body Assy Disassembly/Assembly.

Audible Inspection
● Start the engine.
● Apply the tip of a screwdriver [A] to the injector [C]. Put the grip end onto your ear, and listen whether the injector is clicking or not.
○ A sound scope [B] can also be used.
● Do the same for the other injectors.
★ If all the injectors click at a regular intervals, the injectors are good. The trouble may be related to the fuel line, requiring fuel pressure inspection (see Fuel Line section).
○ The click interval becomes shorter as the engine speed rises.
★ If any injector(s) doesn’t click, the DFI circuit or the injector is suspect. Perform “Fuel Injector Power Source Voltage Inspection”, first.

Fuel Injector Power Source Voltage Inspection
● Remove the ECU (see ECU Power Supply Inspection).
○ Do not disconnect the ECU connector.
● Connect a digital meter [A] to the ECU connector [B], using the needle adapter [C].
○ Special Tool - Needle Adapter Set: 57001-1457
● Measure the power source voltage with the engine stopped, and with the connector joined.
● Turn the ignition switch ON.
 Injector Power Source Voltage at ECU
 Connections: Meter (+) → W/Y (terminal 16)
 Meter (–) → Battery (–) Terminal
 Service Limit: Voltage (12.6 V or more)
★ If the meter doesn’t read as specified, check the following.
 Main Fuse 30 A (see Fuse section in the Electrical System chapter)
 Fuel Pump Relay (see Relay Circuit Inspection in the Electrical System chapter)
 Power Source Wiring (see Wiring Diagram below)
○ To check the W/R leads between the injector connector and the fuel pump relay, remove the fuel tank (see Fuel Tank Removal) and the left side cover (see Side Cover Removal in the Frame chapter).
★ If the power source voltage is normal, check the output voltage of the injectors.
Fuel Injectors

Fuel Injector Output Voltage Inspection
- Turn the ignition switch OFF.
- Remove the ECU (see ECU Power Supply Inspection).
- Connect a digital voltmeter [A] to the ECU connector [B] with the needle adapter set [C].

Special Tool - Needle Adapter Set: 57001-1457

Injector Output Voltage
Connections to Injector #1
- Meter (+) → BL/R lead (terminal 42)
- Meter (–) → Battery (–) Terminal
Connections to Injector #2
- Meter (+) → BL/G lead (terminal 41)
- Meter (–) → Battery (–) Terminal

- Turn the ignition switch ON.

Output Voltage at Injector Connector
Standard: Battery Voltage (12.8 V or more)

If the output voltage is normal, perform “Injector Signal Test”.
If the output voltage is out of the standard, turn the ignition switch OFF, remove the fuel tank, and check the injector wiring for continuity.

Injector Wiring Inspection
ECU Connector Injector Connectors
- Terminal 36 → Injector #1 Terminal (BL/R)
- Terminal 35 → Injector #2 Terminal (BL/G)

- If the wiring is good, inspect the resistance of the injectors (see Injector Resistance Inspection).
- Remove the needle adapter.
- Apply silicone sealant to the seals of the ECU connector for waterproofing.

Silicone Sealant (Kawasaki Bond: 56019-120) - Seals of ECU Connectors

Injector Signal Test
- Prepare two test light sets with male terminals as shown.
 - Rating of Bulb [A]: 12 V × 3 – 3.4 W
 - Terminal Width [B]: 1.8 mm (0.071 in.)
 - Terminal Thickness [C]: 0.8 mm (0.031 in.)

CAUTION
Do not use larger terminals than specified above. A larger terminal could damage the injector main harness connector (female), leading to harness repair or replacement.
Be sure to connect bulbs in series. The bulb works as a current limiter to protect the solenoid in the injector from excessive current.
3-90 FUEL SYSTEM (DFI)

Fuel Injectors

- Remove the fuel tank (see Fuel Tank Removal).
- Remove the air cleaner housing (see Air Cleaner Housing Removal).
- Remove connectors for injector [A].
- Connect each test light set [B] to the injector sub harness connector [C].
- Turn the ignition switch ON.
- While cranking the engine with the starter motor, watch the test lights.
 ★If the test lights flicker at regular intervals, the injector circuit in the ECU, and the wiring are good. Perform the "Injector Resistance Inspection".

Injector signals can be also confirmed by connecting the hand tester (× 10 V AC) instead of the test light set to the injector main harness (female) connector. Crank the engine with the starter motor, and check to see if the hand oscillates at regular intervals.

Special Tool - Hand Tester: 57001-1394

If the test light doesn’t flicker (or the tester needle doesn’t oscillates), check the wiring and connectors again. If the wiring is good, check the injector voltage. If the wiring is good, inspect the ECU for its ground and power supply (see ECU Power Supply Inspection).

Injector Resistance Inspection

- Remove the fuel tank (see Fuel Tank Removal).
- Remove the air cleaner housing (see Air Cleaner Housing Removal).
- Disconnect the connector from the injector [A].
- Measure the injector resistance with the hand tester [B].

Special Tool - Hand Tester: 57001-1394

Injector Resistance

<table>
<thead>
<tr>
<th>Connections to Injector</th>
<th>Meter (+)</th>
<th>Meter (–)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1: W/R ←→ BL/R Terminal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2: W/R ←→ BL/G Terminal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard: about 11.7 – 12.3 Ω @20°C (68°F)

★ If the reading is out of the range, perform the "Injector Unit Test".
★ If the reading is normal, perform the "Injector Unit Test" for confirmation.
Fuel Injectors

Injector Unit Test
- Use two leads [A] and the same test light set [B] as in "Injector Signal Test".
 Rating of Bulb [C]: 12 V × (3 ∼ 3.4) W
 12 V Battery [D]

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be sure to connect the bulb in series. The bulb works as a current limiter to protect the solenoid in the injector from excessive current.</td>
</tr>
</tbody>
</table>

- Connect the test light set to the injector [E] as shown.
- Open and connect [F] the end of the lead to the battery (−) terminal repeatedly. The injector should click.
 ★If the injector does not click, replace the injector.
 ★If the injector clicks, check the wiring again. If the wiring is good, replace the injector (may be clogged) or ECU.

Injector Fuel Line Inspection
- Remove:
 Fuel Tank (see Fuel Removal)
- Be sure to place a piece of cloth around the fuel hose joint and the delivery pipe.
- Insert a minus screw driver [A] into the slit on the joint lock [B].
- Turn the driver to disconnect the joint lock.
- Pull the fuel hose joint [C] out of the delivery pipe.

- Check the injector fuel line for leakage as follows:
 ○ Connect a commercially available vacuum/pressure pump [A] to the nipple of the delivery pipe [B] with a high-pressure fuel hose [C] (both ends connected with the clamps [D]) as shown.
 Torque - Fuel Hose Clamp Screws: 1.5 N·m (0.15 kgf·m, 13 in·lb)
 ○ Apply soap and water solution to the areas [E] as shown.
 ○ Watching the pressure gauge, squeeze the pump lever [F], and build up the pressure until the pressure reaches the maximum pressure.

 Injector Fuel Line Maximum Pressure
 Standard: 333 kPa (3.4 kgf/cm², 48 psi)

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>During pressure testing, do not exceed the maximum pressure for which the system is designed.</td>
</tr>
</tbody>
</table>

- Watch the gauge for at least 6 seconds.
 ★If the pressure holds steady, the system is good.
 ★If the pressure drops at once or if bubbles are found in the area, the line is leaking. Replace the delivery pipe, injectors and related parts.
 ○ Repeat the leak test, and check the fuel line for no leakage.
- Install the pump outlet hose (see Fuel Tank Installation).
- Run the hoses correctly (see Cable, Wire, and Hose Routing section in the Appendix chapter).
3-92 FUEL SYSTEM (DFI)

Fuel Injectors

Fuel Injector Circuit

1. ECU
2. Fuel Injectors
3. Water-proof Joint C
4. Engine Stop Switch
5. Ignition Switch
6. Ignition Fuse 10 A
7. Fuel Pump Relay (for fuel pump and injectors)
8. Relay Box
9. Main Fuse 30 A
10. Battery
11. Frame Ground
12. Joint Connector

http://mototh.com
Throttle Grip and Cables

Throttle Grip Free Play Inspection
- Refer to Throttle Control System Inspection in the Periodic Maintenance chapter.

Throttle Grip Free Play Adjustment
- Refer to Throttle Control System Inspection in the Periodic Maintenance chapter.

Throttle Cable Installation
- Install the throttle cables in accordance with Cable, Wire, and Hose Routing section in the Appendix chapter.
- Install the lower ends of the throttle cables in the cable bracket on the throttle assy after installing the upper ends of the throttle cables in the grip.
- After installation, adjust each cable properly.

WARNING

Operation with incorrectly routed or improperly adjusted cables could result in an unsafe riding condition.

Throttle Cable Lubrication
- Refer to Chassis Parts Lubrication in the Periodic Maintenance chapter.
3-94 FUEL SYSTEM (DFI)

Throttle Body Assy

Idle Speed Inspection
- Refer to Idle Speed Inspection in the Periodic Maintenance chapter.

Engine Vacuum Synchronization Inspection/Adjustment
- Refer to Engine Vacuum Synchronization Inspection in the Periodic Maintenance chapter.

High Altitude Performance Adjustment
- Any modification is not necessary in this model since the inlet air pressure sensor senses inlet air pressure change due to high altitude and the ECU compensates the change.

Throttle Body Assy Removal

WARNING
Gasoline is extremely flammable and can be explosive under certain conditions. Turn the ignition switch OFF. Disconnect the battery (–) cable terminal. Do not smoke. Make sure the area is well-ventilated and free from any source of flame or sparks; this includes any appliance with a pilot light. Be prepared for fuel spillage: any spilled fuel must be completely wiped up immediately.

- Remove:
 Fuel Tank (see Fuel Tank Removal)

- Disconnect:
 Main Throttle Sensor Connector [A]
 Fuel Hose Lower End [B]
 Vacuum Hose [C]
 Subthrottle Sensor Actuator [D] Connector

- Disconnect:
 #1, #2 Injector Connector [A]
 Subthrottle Sensor Connector [B]

- Loosen:
 Holder and Duct Clamp Bolts [C]
Throttle Body Assy

- Loosen the locknut and screw in the throttle cable adjuster fully to give the cables plenty of play.
- Remove the right switch housing and take out the accelerator cable upper end [A] and the decelerator cable upper end [B].

- Remove the throttle cable lower ends [A] from the throttle pulley.

- After removing the throttle body assy, stuff pieces of lint-free, clean cloth into the throttle body holders.

CAUTION
If dirt gets into the engine, excessive engine wear and possible engine damage will occur.

Throttle Body Assy Installation
- Install the holder clamp bolts [A] in the direction shown with each bolt heads [B], facing outwards.

- Install the air cleaner duct clamp screw [A] so that their screw heads [B] face the right.
- Run the vacuum hose (see Cable, Wire, and Hose Routing section in the Appendix chapter).
3-96 FUEL SYSTEM (DFI)

Throttle Body Assy

- Fit the accelerator cable end [A] and the decelerator cable end [B] into the throttle pulley.
- Check fuel leakage from the throttle body Assy.

WARNING

Fuel spilled from the carburetors is hazardous.

- Apply a thin coating of grease to the throttle cable upper ends.
- Install the upper ends of the throttle cables in the grip.
- Fit the projection [A] of the right switch housing into the hole [B] of the handlebar.
- Turn the throttle grip and make sure that the throttle valves move smoothly and return by spring force.
- Check the throttle grip free play (see Throttle Control System Inspection in the Periodic Maintenance chapter).

WARNING

Operation with an incorrectly routed cable could result in an unsafe riding condition.

- Adjust:
 - Throttle Grip Free Play
 - Idle Speed

Throttle Body Assy Disassembly

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not remove, disassemble or adjust the main throttle sensor [A], subthrottle sensor [B], subthrottle valve actuator [C], throttle link mechanism [D] and throttle body Assy [E], because they are adjusted or set at the manufacturer. Adjustment of these parts could result in poor performance, requiring replacement of the throttle body Assy.</td>
</tr>
</tbody>
</table>

- Remove the throttle body Assy (see Throttle Body Assy Removal).

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never drop the throttle body Assy, especially on a hard surface. Such a shock to the body Assy can damage it.</td>
</tr>
</tbody>
</table>
Throttle Body Assy

- Remove:
 - Screws [A]
 - Delivery Pipe [B]
 - Fuel Injectors [C]

Throttle Body Assy Assembly
- Replace the O-rings [A] and seals [B] with the new ones.
- Before assembling, blow away dirt or dust from the throttle body and delivery pipe by applying compressed air.
- Apply engine oil to the new O-rings of each injector [C], insert them into the delivery pipe and confirm whether the injectors turn smoothly or not.
- Install the injectors along with the delivery pipe assy into the throttle bodies.
- Install the throttle body assy (see Throttle Body Assy Installation).
3-98 FUEL SYSTEM (DFI)

Air Cleaner

Air Cleaner Element Removal/Installation
- Refer to Air Cleaner Element Replacement in the Periodic Maintenance chapter.

Air Cleaner Element Inspection
- Remove the air cleaner element (see Air Cleaner Element Replacement in the Periodic Maintenance chapter).
- Visually check the element [A] for tears or breaks.
 ★ If the element has any tears or breaks, replace the element.

Air Cleaner Oil Draining
A drain hose is connected to the bottom of the air cleaner to drain water or oil accumulated in the cleaner part.
- Visually check the drain hose [A] if the water or oil accumulates.
 ★ If any water or oil accumulates in the hose, remove the plug [B] from the drain hose and drain it.

WARNING
Be sure to reinstall the plug in the drain hose after draining. Oil on tires will make them slippery and can cause an accident and injury.

Air Cleaner Housing Removal
- Remove disconnect.
 Hose (Disconnect) [A]
 Inlet Air Temperature Sensor Connector [B]
 Screws [C]
 Cover [D]

- Disconnect the breather hose [A] on the upper crankcase.

http://mototh.com
Air Cleaner

- Unscrew the bolts [A] and remove the air cleaner housing [B].

Air Cleaner Housing Installation
- Install the clamp on the hose [A] so that its pinch heads [B] face the right.
- Install the clamp on the breather hose [C] so that its pinch heads [D] face the front.
3-100 FUEL SYSTEM (DFI)

Fuel Tank

Fuel Tank Removal

WARNING

Gasoline is extremely flammable and can be explosive under certain conditions. Make sure the area is well-ventilated and free from any source of flame or sparks; this includes any appliance with a pilot light. Do not smoke. Turn the ignition switch OFF. Be prepared for fuel spillage; any spilled fuel must be completely wiped up immediately.

- **Remove:**
 - Seat (see Seat Removal in the Frame chapter)
 - Side Covers (see Side Covers Removal in the Frame chapter)
 - Fuel Tank Bolts [A]

- **Turn the ignition switch, and engine stop switch OFF.**
- **Wait until the engine cools down.**
- **Open the fuel tank cap [A] to lower the pressure in the tank.**
 - During tank removal, keep the tank cap open to release pressure in the tank. This makes fuel spillage less.

- **Draw the fuel out from the fuel tank with a commercially available pump [A].**
 - Use a soft plastic hose [B] as a pump inlet hose in order to insert the hose smoothly.
 - Put the hose through the fill opening [C] into the tank and draw the fuel out.

WARNING

The fuel could not be removed completely from the fuel tank. Be careful for remained fuel spillage.

- **Remove:**
 - Left Side Cover (see Side Cover Removal in the Frame chapter)
 - Disconnect the fuel pump lead connector [A] and the tube [B].
Fuel Tank

- Be sure to place a piece of cloth [A] around the fuel hose joint.
- Insert a minus screwdriver [B] into the slit [C] on the joint lock.
- Turn [A] the driver to disconnect the joint lock [B].
- Pull [C] the fuel hose joint out [D] of the outlet pipe.

CAUTION

When removing the fuel hose joint, do not apply strong force to the outlet pipe on the fuel pump. The pipe made from resin could be damaged.

- Close the fuel tank cap.
- Remove the fuel tank, and place it on a flat surface.
 - Do not apply the load to the fuel pump outlet portion [A] especially the outlet pipe made from resin.

Fuel Tank Installation

- Note the above WARNING (see Fuel Tank Removal).
- Route the hoses correctly (see Cable, Wire, and Hose Routing in the Appendix chapter).
- Check that the rubber dampers [A] are on the frame and the fuel tank.

- Check that the dampers [A] are in place on the fuel tank as well.
 - If the dampers are damaged or deteriorated, replace them.
3-102 FUEL SYSTEM (DFI)

Fuel Tank

- Be sure that the trim seal [A] is on the fuel tank.
 Reverse Side of Fuel Tank [B]
 Side Cover [C]
 Approx. 17 mm (0.67 in.) [D]
 Front [E]

- Insert [A] the fuel hose joint [B] straight onto the delivery pipe until the hose joint clicks.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>When installing the fuel hose joint, do not apply strong force to the outlet pipe on the fuel pump. The pipe made from resin could be damaged.</td>
</tr>
</tbody>
</table>

- Push [C] the joint lock [D].

- Push and pull [A] the hose joint [B] back and forth more than two times and make sure it is locked and doesn’t come off.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make sure the hose joint is installed correctly on the delivery pipe by sliding the joint, or the fuel could leak.</td>
</tr>
</tbody>
</table>

- If it comes off, reinstall the hose joint.
- Connect the fuel pump and the fuel level sensor connectors and the battery (−) cable terminal.

Fuel Tank and Cap Inspection

- Visually inspect the gasket [A] on the tank cap for any damage.
- Replace the gasket if it is damaged.
- Check to see if the water drain pipe [B] in the tank is not clogged. check the tank cap breather also.
- If they are clogged, remove the tank and drain it, and then blow the breather free with compressed air.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not apply compressed air to the air vent holes [C] in the tank cap. This could cause damage and clogging of the labyrinth in the cap.</td>
</tr>
</tbody>
</table>
Fuel Tank

Fuel Tank Cleaning

WARNING

Clean the tank in a well-ventilated area, and take care that there are no sparks or flame anywhere near the working area. Because of the danger or highly flammable liquids, do not use gasoline or low-flash point solvents to clean the tank.

- Remove the fuel tank (see Fuel Tank Removal).
- Remove the fuel pump inlet hose and the fuel pump (see Fuel Pump section).
- Pour some high-flash point solvent into the fuel tank and shake the tank to remove dirt and fuel deposits.
- Draw the solvent out of the fuel tank.
- Dry the tank with compressed air.
- Install the fuel pump (see Fuel Pump Installation).
- Install the fuel tank (see Fuel Tank Installation).
Cooling System

Table of Contents

Exploded View ... 4-2
Coolant Flow Chart .. 4-4
Specifications ... 4-6
Special Tools .. 4-7
Coolant .. 4-8
 Coolant Deterioration Inspection 4-8
 Coolant Level Inspection .. 4-8
 Coolant Draining ... 4-8
 Coolant Filling .. 4-8
 Pressure Testing .. 4-8
 Cooling System Flushing .. 4-9
 Coolant Reserve Tank Removal/Installation 4-9
Water Pump .. 4-10
 Water Pump Removal .. 4-10
 Water Pump Installation .. 4-10
 Mechanical Seal Inspection 4-11
 Water Pump Housing Disassembly 4-11
 Water Pump Housing Assembly 4-11
 Impeller Assembly ... 4-12
 Pump Impeller Inspection .. 4-12
Radiator .. 4-13
 Radiator and Radiator Fan Removal 4-13
 Radiator and Radiator Fan Installation 4-14
 Radiator Inspection .. 4-14
 Radiator Cap Inspection ... 4-14
 Radiator Filler Neck Inspection 4-15
Thermostat .. 4-16
 Thermostat Removal .. 4-16
 Thermostat Installation .. 4-16
 Thermostat Inspection ... 4-16
Hose and Pipes ... 4-18
 Hose Installation ... 4-18
 Hose Inspection .. 4-18
Water Temperature Sensor .. 4-19
 Water Temperature Sensor Removal/Installation 4-19
 Water Temperature Sensor Inspection 4-19
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>1</td>
<td>Radiator Hose Clamp Screws</td>
<td>2.0</td>
<td>0.20</td>
</tr>
<tr>
<td>2</td>
<td>Water Pump Impeller Bolt</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>Water Pump Cover Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>Water Pump Drain Bolt</td>
<td>7.0</td>
<td>0.70</td>
</tr>
<tr>
<td>5</td>
<td>Thermostat Housing Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>Water Temperature Sensor</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>Baffle Plate Bolts</td>
<td>5.9</td>
<td>0.60</td>
</tr>
</tbody>
</table>

8. Reserve Tank
9. Baffle Plate
10. Cylinder Head Cover
11. Thermostat
12. Water Pump Impeller
13. Mechanical Seal
G: Apply grease.
HG: Apply high-temperature grease.
R: Replacement Parts
Coolant Flow Chart

- Cylinder Head Jacket
- Thermostat Housing
- Cylinder Jacket
- Reserve Tank
- Overflow Hose
- Reserve Tank Hose
- Water Pump
- Radiator
- Radiator Fan
- Radiator Cap

Legend:
- **Black**: Hot Coolant
- **Light Gray**: Cold Coolant
Permanent type antifreeze is used as a coolant to protect the cooling system from rust and corrosion. When the engine starts, the water pump turns and the coolant circulates.

The thermostat is a wax pellet type which opens or closes with coolant temperature changes. The thermostat continuously changes its valve opening to keep the coolant temperature at the proper level. When coolant temperature is below 80.5 ∼ 83.5°C (177 ∼ 182°F), the thermostat closes so that the coolant flow is restricted through the air bleeder hole, causing the engine to warm up more quickly. When coolant temperature is more than 80.5 ∼ 83.5°C, the thermostat opens and the coolant flows.

When the coolant temperature goes up beyond 93 ∼ 103°C (199 ∼ 217°F), the radiator fan relay conducts to operate the radiator fan. The radiator fan draws air through the radiator core when there is not sufficient air flow such as at low speeds. This increases up the cooling action of the radiator. When the temperature is below 91°C (196°F) ∼ temperature less than ON temperature, the fan relay opens and the radiator fan stops.

In this way, this system controls the engine temperature within narrow limits where the engine operates most efficiently even if the engine load varies.

The system is pressurized by the radiator cap to suppress boiling and the resultant air bubbles which can cause engine overheating. As the engine warms up, the coolant in the radiator and the water jacket expands. The excess coolant flows through the radiator cap and hose to the reserve tank to be stored there temporarily. Conversely, as the engine cools down, the coolant in the radiator and the water jacket contracts, and the stored coolant flows back to the radiator from the reserve tank.

The radiator cap has two valves. One is a pressure valve which holds the pressure in the system when the engine is running. When the pressure exceeds 112.3 ∼ 141.7 kPa (1.15 ∼ 1.45 kgf/cm², 16.3 ∼ 20.5 psi), the pressure valve opens and releases the pressure to the reserve tank. As soon as pressure escapes, the valve closes, and keeps the pressure at 112.3 ∼ 141.7 kPa (1.15 ∼ 1.45 kgf/cm², 16.3 ∼ 20.5 psi). When the engine cools down, another small valve (vacuum valve) in the cap opens. As the coolant cools, the coolant contracts to form a vacuum in the system. The vacuum valve opens and allows the coolant from the reserve tank to enter the radiator.
4-6 COOLING SYSTEM

Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolant Provided when Shipping</td>
<td></td>
</tr>
<tr>
<td>Type (Recommended)</td>
<td>Permanent type of antifreeze (soft water and ethylene glycol plus corrosion and rust inhibitor chemicals for aluminum engines and radiators)</td>
</tr>
<tr>
<td>Color</td>
<td>Green</td>
</tr>
<tr>
<td>Mixed Ratio</td>
<td>Soft water 50%, coolant 50%</td>
</tr>
<tr>
<td>Freezing Point</td>
<td>−35°C (−31°F)</td>
</tr>
<tr>
<td>Total Amount</td>
<td>1.2 L (1.3 US qt) (reserve tank full level, including radiator and engine)</td>
</tr>
<tr>
<td>Radiator Cap</td>
<td></td>
</tr>
<tr>
<td>Relief Pressure</td>
<td>112.3 ~ 141.7 kPa (1.15 ~ 1.45 kgf/cm², 16.3 ~ 20.5 psi)</td>
</tr>
<tr>
<td>Thermostat</td>
<td></td>
</tr>
<tr>
<td>Valve Opening Temperature</td>
<td>80.5 ~ 83.5°C (177 ~ 182°F)</td>
</tr>
<tr>
<td>Valve Full Opening Lift</td>
<td>8 mm (0.31 in.) or more @95°C (203°F)</td>
</tr>
</tbody>
</table>
Special Tools

<table>
<thead>
<tr>
<th>Bearing Driver Set:</th>
<th>Oil Seal Driver:</th>
</tr>
</thead>
<tbody>
<tr>
<td>57001-1129</td>
<td>57001-1660</td>
</tr>
</tbody>
</table>

[Image of Bearing Driver Set: 57001-1129]

[Image of Oil Seal Driver: 57001-1660]
4-8 COOLING SYSTEM

Coolant

Coolant Deterioration Inspection
• Remove the right center fairing cover (see Center Fairing Removal in the Frame chapter).
• Visually inspect the coolant [A] in the reserve tank.
 ★ If whitish cotton-like wafts are observed, aluminum parts in the cooling system are corroded. If the coolant is brown, iron or steel parts are rusting. In either case, flush the cooling system.
 ★ If the coolant gives off an abnormal smell, check for a cooling system leak. It may be caused by exhaust gas leaking into the cooling system.

Coolant Level Inspection
• Refer to Coolant Level in the Periodic Maintenance chapter.

Coolant Draining
• Refer to Coolant Change in the Periodic Maintenance chapter.

Coolant Filling
• Refer to Coolant Change in the Periodic Maintenance chapter.

Pressure Testing
• Remove the reserve tank (see Coolant Change in the Periodic Maintenance chapter).
• Remove the radiator cap, and install a cooling system pressure tester [A] on the filler neck [B].

 NOTE
 ○ Wet the cap sealing surfaces with water or coolant to prevent pressure leaks.
 • Build up pressure in the system carefully until the pressure reaches 141.7 kPa (1.45 kgf/cm², 20.5 psi).

 CAUTION
 During pressure testing, do not exceed the pressure for which the system is designed. The maximum pressure is 141.7 kPa (1.45 kgf/cm², 20.5 psi).

 • Watch the gauge for at least 6 seconds.
 ★ If the pressure holds steady, the system is all right.
 ★ If the pressure drops and no external source is found, check for internal leaks. Droplets in the engine oil indicate internal leakage. Check the cylinder head gasket and the water pump.
 • Remove the pressure tester, replenish the coolant, and install the radiator cap.
Cooling System Flushing

Over a period of time, the cooling system accumulates rust, scale, and lime in the water jacket and radiator. When this accumulation is suspected or observed, flush the cooling system. If this accumulation is not removed, it will clog up the water passage and considerably reduce the efficiency of the cooling system.

- Drain the cooling system (see Coolant Change in the Periodic Maintenance chapter).
- Fill the cooling system with fresh water mixed with a flushing compound.

CAUTION

Do not use a flushing compound which is harmful to the aluminum engine and radiator. Carefully follow the instructions supplied by the manufacturer of the cleaning product.

- Warm up the engine, and run it at normal operating temperature for about ten minutes.
- Stop the engine, and drain the cooling system.
- Fill the system with fresh water.
- Warm up the engine and drain the system.
- Repeat the previous two steps once more.
- Fill the system with a permanent type coolant and bleed the air from the system (see Coolant Change in the Periodic Maintenance chapter).

Coolant Reserve Tank Removal/Installation

- The coolant reserve tank is removed and installed during coolant change (see Coolant Change in the Periodic Maintenance chapter).
4-10 COOLING SYSTEM

Water Pump

Water Pump Removal
- Drain the coolant (see Coolant Change in the Periodic Maintenance chapter).
- Loosen the clamp and remove the radiator hose [A] from the water pump cover [B].
- Remove the water pump cover bolts [C].

- Shift the transmission into 1st gear.
- While applying the rear brake, remove the water pump impeller bolt [A].
- Remove:
 - Impeller [B]
 - Water Pump Housing [C]

Water Pump Installation
- When installing the water pump impeller bolt, shift the transmission into 1st gear and apply the rear brake.
- Replace the O-rings [A] on the water pump housing with new ones and apply grease them.
- Apply high temperature grease to the lips of the water pump housing oil seal [B].

- Be sure that the dowel pin [A] is in position.
- Install the water pump housing.
- Tighten:
 - Torque - Water Pump Impeller Bolt: 9.8 N·m (1.0 kgf·m, 87 in·lb)

- Replace the O-ring [A] on the water pump cover with a new one and grease it.
Water Pump

- Install the water pump cover, being careful of the two dowel pins [A].

Torque - Water Pump Cover Bolts: 9.8 N·m (1.0 kgf·m, 87 in·lb)

Mechanical Seal Inspection
- Visually inspect the mechanical seal.
 - If any one of the parts is damaged, replace the mechanical seal as a unit.
 - The sealing seat and rubber seal may be removed easily by hand.
 - [A] Impeller Sealing Seat Surface
 - [B] Rubber Seal
 - [C] Mechanical Seal Diaphragm

Water Pump Housing Disassembly

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be careful not to damage the sealing surface of the mechanical seal.</td>
</tr>
</tbody>
</table>

- Take the oil seal [A] out of the housing [B] with a hook [C].

- Press the mechanical seal [A] out of the housing with a bearing driver [B].
 - Special Tool - Bearing Driver Set: 57001-1129

Water Pump Housing Assembly
- Apply a high temperature grease [A] to the new oil seal [B].
- Press the oil seal into the housing with a bearing driver so that the seal surface is flush [C] with the end of the hole.
- Press the new mechanical seal into the housing with the oil seal driver [D] until its flange [E] touches the surface [F] of the housing.
 - Special Tool - Oil Seal Driver: 57001-1660
4-12 COOLING SYSTEM

Water Pump

Impeller Assembly
- Clean the sliding surface of the mechanical seal with a high flash-point solvent, and apply a little coolant to the sliding surface to give the mechanical seal initial lubrication.
- Apply coolant to the surfaces of the rubber seal [A] and sealing seat [B], and install the rubber seal and sealing seat into the impeller by pressing them by hand until the seat stops at the bottom of the hole.

Pump Impeller Inspection
- Visually check the impeller [A].
- If the surface is corroded, or if the blades are damaged, replace the impeller.
Radiator

Radiator and Radiator Fan Removal

- Drain the coolant (see Coolant Change in the Periodic Maintenance chapter).
- Remove:
 - Left/Right Center Fairing (see Center Fairing in the Frame chapter)
 - Reserve Tank (see Coolant Change in the Periodic Maintenance chapter)
 - Radiator Fan Motor Connector [A] (Disconnect)
 - Radiator Hose Clamp Screw [B] (Loosen)

- Loosen:
 - Radiator Hose Clamp Screw [A]
- Remove:
 - Cotter Pin [B]

- Pull [A] the radiator [B] toward the left, noting the baffle plate [C] on the cylinder head cover.

CAUTION

Do not touch the radiator core. This could damage the radiator fins, resulting in loss of cooling efficiency.

- If necessary, remove:
 - Radiator Fan Mounting Bolts [A]
 - Radiator Fan [B]
4-14 COOLING SYSTEM

Radiator

Radiator and Radiator Fan Installation
- Install the grommet [A] so that its large side faces the front.
- Install the radiator [B] to the frame.
 - Align [C] the projection on the radiator with the hole on the frame.
 - Align [D] the projection on the frame with the hole on the radiator.
 - Note the baffle plate on the cylinder head cover when installing the radiator.
 - Position the radiator hose clamp screws [E] as shown.

Radiator Inspection
- Check the radiator core.
 - If there are obstructions to air flow, remove them.
 - If the corrugated fins [A] are deformed, carefully straighten them.
 - If the air passages of the radiator core are blocked more than 20% by unremovable obstructions or irreparably deformed fins, replace the radiator with a new one.

CAUTION
When cleaning the radiator with steam cleaner, be careful of the following to prevent radiator damage:
- Keep the steam gun [A] away more than 0.5 m (1.6 ft) [B] from the radiator core.
- Hold the steam gun perpendicular [C] (not oblique [D]) to the core surface.
- Run the steam gun, following the core fin direction.

Radiator Cap Inspection
- Remove:
 - Reserve Tank (see Coolant Change in the Periodic Maintenance chapter)
 - Radiator Cap
- Check the condition of the bottom [A] and top [B] valve seals and valve spring [C].
 - If any one of them shows visible damage, replace the cap with a new one.

http://mototh.com
Radiator

• Install the cap [A] on a cooling system pressure tester [B].

 NOTE
 ○ *Wet the cap sealing surfaces with water or coolant to prevent pressure leaks.*

• Watching the pressure gauge, pump the pressure tester to build up the pressure until the relief valve opens: the gauge needle flicks downward. Stop pumping and measure leak time at once. The relief valve must open within the specified range in the table below and the gauge hand must remain within the same range at least 6 seconds.

 Radiator Cap Relief Pressure
 Standard: 112.3 – 141.7 kPa (1.15 – 1.45 kgf/cm², 16.3 – 20.5 psi)

 ★ If the cap cannot hold the specified pressure or if it holds too much pressure, replace it with a new one.

Radiator Filler Neck Inspection

- Remove the reserve tank (see Coolant Change in the Periodic Maintenance chapter).
- Remove the radiator cap.
- Check the radiator filler neck for signs of damage.
- Check the condition of the top and bottom sealing seats [A] in the filler neck. They must be smooth and clean for the radiator cap to function properly.
4-16 COOLING SYSTEM

Thermostat

Thermostat Removal
- Drain the coolant (see Coolant Change in the Periodic Maintenance chapter).
- Remove:
 - Left Center Fairing (see Center Fairing Removal in the Frame chapter)
 - Thermostat Hosing Bolts [A]
 - Thermostat Hosing [B]

- Pull the thermostat [A] out of the cylinder head.

Thermostat Installation
- Install the thermostat [A] in the cylinder head so that the air bleeder hole [B] is on top.
- Install a new O-ring into the housing and apply grease it.
- Tighten:
 - Torque - Thermostat Hosing Bolts: 9.8 N·m (1.0 kgf·m, 87 in·lb)
- Fill the radiator with coolant (see Coolant Change in the Periodic Maintenance chapter).

Thermostat Inspection
- Remove the thermostat, and inspect the thermostat valve [A] at room temperature.
 - If the valve is open, replace the thermostat with a new one.
Thermostat

• To check valve opening temperature, suspend the thermostat [A] in a container of water and raise the temperature of the water.
 ○ The thermostat must be completely submerged and must not touch the container sides or bottom. Suspend an accurate thermometer [B] in the water so that the heat sensitive portions [C] are located in almost the same depth. It must not touch the container, either.
 ★ If the measurement is out of the specified range, replace the thermostat with a new one.

Thermostat Valve Opening Temperature
80.5 – 83.5°C (177 – 182°F)
4-18 COOLING SYSTEM

Hose and Pipes

Hose Installation
- Install the hoses and pipes, being careful to follow bending direction. Avoid sharp bending, kinking, flattening or twisting.
- Run the hoses (see Cable, Wire, and Hose Routing section in the Appendix chapter).
- Install the clamp [A] as near as possible to the hose end to clear the raised rib of the fitting. This will prevent the hoses from working loose.
 - The clamp screws should be positioned correctly to prevent the clamps from contacting the other parts.
 - **Torque - Radiator Hose Clamp Screws:** 2.0 N·m (0.20 kgf·m, 17 in·lb)

Hose Inspection
- Refer to Cooling Hose and Connection Inspection in the Periodic Maintenance chapter.
COOLING SYSTEM 4-19

Water Temperature Sensor

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>The water temperature sensor should never be allowed to fall on a hard surface. Such a shock to the water temperature sensor can damage it.</td>
</tr>
</tbody>
</table>

Water Temperature Sensor Removal/Installation

- Refer to Water Temperature Sensor Removal/Installation in the Fuel System (DFI) chapter.
- Water Temperature Sensor [A]

Water Temperature Sensor Inspection

- Refer to Water Temperature Sensor Inspection in the Electrical System chapter.
Engine Top End

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploded View</td>
<td>5-2</td>
</tr>
<tr>
<td>Specifications</td>
<td>5-7</td>
</tr>
<tr>
<td>Special Tools and Sealant</td>
<td>5-9</td>
</tr>
<tr>
<td>Clean Air System</td>
<td>5-11</td>
</tr>
<tr>
<td>Air Suction Valve Removal</td>
<td>5-11</td>
</tr>
<tr>
<td>Air Suction Valve Installation</td>
<td>5-11</td>
</tr>
<tr>
<td>Air Suction Valve Inspection</td>
<td>5-11</td>
</tr>
<tr>
<td>Air Switching Valve Removal</td>
<td>5-11</td>
</tr>
<tr>
<td>Air Switching Valve Installation</td>
<td>5-12</td>
</tr>
<tr>
<td>Air Switching Valve Operation Test</td>
<td>5-12</td>
</tr>
<tr>
<td>Air Switching Valve Unit Test</td>
<td>5-12</td>
</tr>
<tr>
<td>Clean Air System Hose Inspection</td>
<td>5-12</td>
</tr>
<tr>
<td>Cylinder Head Cover</td>
<td>5-13</td>
</tr>
<tr>
<td>Camshaft Chain Tensioner</td>
<td>5-14</td>
</tr>
<tr>
<td>Camshaft Chain Tensioner Removal</td>
<td>5-14</td>
</tr>
<tr>
<td>Camshaft Chain Tensioner Installation</td>
<td>5-14</td>
</tr>
<tr>
<td>Camshaft, Camshaft Chain</td>
<td>5-15</td>
</tr>
<tr>
<td>Camshaft Removal</td>
<td>5-15</td>
</tr>
<tr>
<td>Camshaft Installation</td>
<td>5-15</td>
</tr>
<tr>
<td>Camshaft and Sprocket Assembly</td>
<td>5-18</td>
</tr>
<tr>
<td>Camshaft, Camshaft Cap Wear</td>
<td>5-18</td>
</tr>
<tr>
<td>Camshaft Runout</td>
<td>5-19</td>
</tr>
<tr>
<td>Cam Wear</td>
<td>5-19</td>
</tr>
<tr>
<td>Camshaft Chain Removal</td>
<td>5-19</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td>5-20</td>
</tr>
<tr>
<td>Cylinder Compression Measurement</td>
<td>5-20</td>
</tr>
<tr>
<td>Cylinder Head Removal</td>
<td>5-21</td>
</tr>
<tr>
<td>Cylinder Head Installation</td>
<td>5-22</td>
</tr>
<tr>
<td>Cylinder Head Warp</td>
<td>5-24</td>
</tr>
<tr>
<td>Valves</td>
<td>5-25</td>
</tr>
<tr>
<td>Valve Clearance Inspection</td>
<td>5-25</td>
</tr>
<tr>
<td>Valve Clearance Adjustment</td>
<td>5-25</td>
</tr>
<tr>
<td>Valve Removal</td>
<td>5-25</td>
</tr>
<tr>
<td>Valve Inspection</td>
<td>5-25</td>
</tr>
<tr>
<td>Valve Installation</td>
<td>5-25</td>
</tr>
<tr>
<td>Valve Guide Removal</td>
<td>5-25</td>
</tr>
<tr>
<td>Valve Guide Installation</td>
<td>5-26</td>
</tr>
<tr>
<td>Valve-to-Guide Clearance</td>
<td>5-26</td>
</tr>
<tr>
<td>Cylinder, Pistons</td>
<td>5-32</td>
</tr>
<tr>
<td>Cylinder Removal</td>
<td>5-32</td>
</tr>
<tr>
<td>Cylinder Installation</td>
<td>5-32</td>
</tr>
<tr>
<td>Piston Removal</td>
<td>5-32</td>
</tr>
<tr>
<td>Piston Installation</td>
<td>5-33</td>
</tr>
<tr>
<td>Cylinder Wear</td>
<td>5-34</td>
</tr>
<tr>
<td>Piston Wear</td>
<td>5-34</td>
</tr>
<tr>
<td>Piston Ring, Piston Ring Groove Wear</td>
<td>5-35</td>
</tr>
<tr>
<td>Piston Ring Groove Width</td>
<td>5-35</td>
</tr>
<tr>
<td>Piston Ring Thickness</td>
<td>5-35</td>
</tr>
<tr>
<td>Piston Ring End Gap</td>
<td>5-36</td>
</tr>
<tr>
<td>Throttle Body Holder</td>
<td>5-37</td>
</tr>
<tr>
<td>Throttle Body Holder Installation</td>
<td>5-37</td>
</tr>
<tr>
<td>Muffler Body Removal</td>
<td>5-38</td>
</tr>
<tr>
<td>Muffler Body Removal</td>
<td>5-38</td>
</tr>
<tr>
<td>Exhaust Pipe Removal</td>
<td>5-38</td>
</tr>
<tr>
<td>Muffler Body and Exhaust Pipe Installation</td>
<td>5-39</td>
</tr>
</tbody>
</table>

http://mototh.com
5-2 ENGINE TOP END
Exploded View
<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>1</td>
<td>Air Suction Valve Cover Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>Cylinder Head Cover Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>Camshaft Cap Bolts</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>Cylinder Head Bolts (M10 New Bolts)</td>
<td>54</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>Cylinder Head Bolts (M10 Used Bolts)</td>
<td>49</td>
<td>5.0</td>
</tr>
<tr>
<td>5</td>
<td>Cylinder Head Bolts (M6)</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>Throttle Body Holder Bolts</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>Rear Camshaft Chain Guide Bolts</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>8</td>
<td>Camshaft Chain Tensioner Mounting Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>9</td>
<td>Camshaft Chain Tensioner Cap Bolt</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>10</td>
<td>Spark Plugs</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>11</td>
<td>Camshaft Sprocket Bolts</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>12</td>
<td>Baffle Plate Bolts</td>
<td>5.9</td>
<td>0.60</td>
</tr>
</tbody>
</table>

L: Apply a non-permanent locking agent.
M: Apply molybdenum disulfide grease.
MO: Apply molybdenum disulfide oil solution.
 (mixture of the engine oil and molybdenum disulfide grease in a weight ratio 10 : 1)
R: Replacement Parts
S: Follow the specific tightening sequence.
SS: Apply silicone sealant.
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque (N·m)</th>
<th>Torque (kgf·m)</th>
<th>Torque (ft·lb)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cylinder Bolt (M8)</td>
<td>27.5</td>
<td>2.8</td>
<td>20</td>
<td>MO,S</td>
</tr>
<tr>
<td>2</td>
<td>Cylinder Nut (M10)</td>
<td>49</td>
<td>5.0</td>
<td>36</td>
<td>MO,S</td>
</tr>
<tr>
<td>3</td>
<td>Cylinder Bolts (M6)</td>
<td>12</td>
<td>1.2</td>
<td>106 in·lb</td>
<td>S</td>
</tr>
<tr>
<td>4</td>
<td>Exhaust Pipe Manifold Holder Nuts</td>
<td>17</td>
<td>1.7</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Muffler Body Mounting Bolt (Front)</td>
<td>20</td>
<td>2.0</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Muffler Body Mounting Bolt (Rear)</td>
<td>20</td>
<td>2.0</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

7. "R" marked side faces up.
8. "RN" marked side faces up.
9. Hollow mark faces forward.

MO: Apply molybdenum disulfide oil solution.

(mixture of the engine oil and molybdenum disulfide grease in a weight ratio 10 : 1)

R: Replacement Parts

Exhaust System ER650A6F

![Exhaust System ER650A6F Diagram](image)

- Full: Full Power
- H: Honeycomb Type Catalyst
- GB: United Kingdom Model

http://mototh.com
5-6 ENGINE TOP END
Exploded View

Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camshafts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cam Height:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>35.843 ~ 35.957 mm (1.4111 ~ 1.4156 in.)</td>
<td>35.74 mm (1.4071 in.)</td>
</tr>
<tr>
<td>Inlet</td>
<td>36.543 ~ 36.657 mm (1.4387 ~ 1.4432 in.)</td>
<td>36.44 mm (1.4346 in.)</td>
</tr>
<tr>
<td>Camshaft Journal, Camshaft Cap Clearance</td>
<td>0.028 ~ 0.071 mm (0.0011 ~ 0.0028 in.)</td>
<td>0.16 mm (0.0063 in.)</td>
</tr>
<tr>
<td>Camshaft Journal Diameter</td>
<td>23.950 ~ 23.972 mm (0.9429 ~ 0.9438 in.)</td>
<td>23.92 mm (0.942 in.)</td>
</tr>
<tr>
<td>Camshaft Bearing Inside Diameter</td>
<td>24.000 ~ 24.021 mm (0.9449 ~ 0.9457 in.)</td>
<td>24.08 mm (0.948 in.)</td>
</tr>
<tr>
<td>Camshaft Runout</td>
<td>TIR 0.02 mm (0.0008 in.) or less</td>
<td>TIR 0.1 mm (0.004 in.)</td>
</tr>
<tr>
<td>Cylinder Head</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder Compression</td>
<td>(Usable Range) 961 ~ 1 471 kPa (9.8 ~ 15.0 kgf/cm², 139~ 213 psi) @400 r/min (rpm)</td>
<td>– – –</td>
</tr>
<tr>
<td>Cylinder Head Warp</td>
<td>– – –</td>
<td>0.05 mm (0.002 in.)</td>
</tr>
<tr>
<td>Valves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.22 ~ 0.31 mm (0.0087 ~ 0.0122 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Inlet</td>
<td>0.15 ~ 0.21 mm (0.0059 ~ 0.0083 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Valve Head Thickness:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.8 mm (0.031 in.)</td>
<td>0.5 mm (0.020 in.)</td>
</tr>
<tr>
<td>Inlet</td>
<td>0.5 mm (0.020 in.)</td>
<td>0.25 mm (0.0098 in.)</td>
</tr>
<tr>
<td>Valve Stem Bend</td>
<td>TIR 0.01 mm (0.0004 in.) or less</td>
<td>TIR 0.05 mm (0.002 in.)</td>
</tr>
<tr>
<td>Valve Stem Diameter:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>4.455 ~ 4.470 mm (0.1754 ~ 0.1760 in.)</td>
<td>4.44 mm (0.175 in.)</td>
</tr>
<tr>
<td>Inlet</td>
<td>4.475 ~ 4.490 mm (0.1762 ~ 0.1768 in.)</td>
<td>4.46 mm (0.176 in.)</td>
</tr>
<tr>
<td>Valve Guide Inside Diameter:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>4.500 ~ 4.512 mm (0.1772 ~ 0.1776 in.)</td>
<td>4.58 mm (0.180 in.)</td>
</tr>
<tr>
<td>Inlet</td>
<td>4.500 ~ 4.512 mm (0.1772 ~ 0.1776 in.)</td>
<td>4.58 mm (0.180 in.)</td>
</tr>
<tr>
<td>Valve/Valve Guide Clearance (Wobble Method):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.07 ~ 0.14 mm (0.0028 ~ 0.0055 in.)</td>
<td>0.27 mm (0.0106 in.)</td>
</tr>
<tr>
<td>Inlet</td>
<td>0.02 ~ 0.08 mm (0.0008 ~ 0.0032 in.)</td>
<td>0.22 mm (0.0087 in.)</td>
</tr>
<tr>
<td>Valve Seat Cutting Angle</td>
<td>45°, 32°, 55°, 60°</td>
<td>– – –</td>
</tr>
<tr>
<td>Valve Seating Surface:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>0.5 ~ 1.0 mm (0.020 ~ 0.039 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Inlet</td>
<td>0.5 ~ 1.0 mm (0.020 ~ 0.039 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Outside Diameter:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>27.6 ~ 27.8 mm (1.087 ~ 1.094 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Inlet</td>
<td>32.6 ~ 32.8 mm (1.283 ~ 1.291 in.)</td>
<td>– – –</td>
</tr>
</tbody>
</table>
5-8 ENGINE TOP END

Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve Spring Free Length:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>41.91 mm (1.650 in.)</td>
<td>40.3 mm (1.587 in.)</td>
</tr>
<tr>
<td>Inlet</td>
<td>41.91 mm (1.650 in.)</td>
<td>40.3 mm (1.587 in.)</td>
</tr>
<tr>
<td>Cylinder, Pistons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder Inside Diameter</td>
<td>82.994 ~ 83.006 mm (3.2675 ~ 3.2679 in.)</td>
<td>83.10 mm (3.2716 in.)</td>
</tr>
<tr>
<td>Piston Diameter</td>
<td>82.969 ~ 82.984 mm (3.2665 ~ 3.2671 in.)</td>
<td>82.82 mm (3.2606 in.)</td>
</tr>
<tr>
<td>Piston/Cylinder Clearance</td>
<td>0.010 ~ 0.037 mm (0.0004 ~ 0.0015 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Piston Ring/Groove Clearance:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>0.03 ~ 0.07 mm (0.0012 ~ 0.0028 in.)</td>
<td>0.17 mm (0.0067 in.)</td>
</tr>
<tr>
<td>Second</td>
<td>0.02 ~ 0.06 mm (0.0008 ~ 0.0024 in.)</td>
<td>0.16 mm (0.0063 in.)</td>
</tr>
<tr>
<td>Piston Ring Groove Width:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>0.92 ~ 0.94 mm (0.0362 ~ 0.0370 in.)</td>
<td>1.02 mm (0.040 in.)</td>
</tr>
<tr>
<td>Second</td>
<td>1.01 ~ 1.03 mm (0.0398 ~ 0.0406 in.)</td>
<td>1.11 mm (0.044 in.)</td>
</tr>
<tr>
<td>Piston Ring Thickness:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>0.87 ~ 0.89 mm (0.0342 ~ 0.0350 in.)</td>
<td>0.80 mm (0.031 in.)</td>
</tr>
<tr>
<td>Second</td>
<td>0.97 ~ 0.99 mm (0.0382 ~ 0.0390 in.)</td>
<td>0.90 mm (0.035 in.)</td>
</tr>
<tr>
<td>Piston Ring End Gap:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>0.25 ~ 0.40 mm (0.0098 ~ 0.0157 in.)</td>
<td>0.7 mm (0.028 in.)</td>
</tr>
<tr>
<td>Second</td>
<td>0.40 ~ 0.55 mm (0.0157 ~ 0.0217 in.)</td>
<td>0.8 mm (0.031 in.)</td>
</tr>
</tbody>
</table>
Special Tools and Sealant

Compression Gauge, 20 kgf/cm²:
57001-221

Valve Seat Cutter, 60° - φ30:
57001-1123

Valve Spring Compressor Assembly:
57001-241

Valve Seat Cutter Holder Bar:
57001-1128

Valve Seat Cutter, 45° - φ35:
57001-1116

Valve Seat Cutter, 45° - φ30:
57001-1187

Valve Seat Cutter, 32° - φ30:
57001-1120

Valve Seat Cutter, 55° - φ35:
57001-1247

Valve Seat Cutter, 32° - φ35:
57001-1121

Valve Spring Compressor Adapter, φ21:
57001-1272

http://mototh.com
5-10 ENGINE TOP END

Special Tools and Sealant

Compression Gauge Adapter, M10 × 1.0:
57001-1317

Valve Seat Cutter Holder, φ4.5:
57001-1330

Valve Guide Arbor, φ4.5:
57001-1331

Valve Guide Reamer, φ4.5:
57001-1333

Piston Pin Puller:
57001-1568

Piston Pin Puller Adapter C:
57001-1657

Kawasaki Bond (Silicone Sealant):
92104-0004

http://mototh.com
Clean Air System

Air Suction Valve Removal

- Remove:
 - Fuel Tank (see Fuel Tank Removal in the Fuel System (DFI) chapter)
 - Air Cleaner Housing (see Air Cleaner Housing Removal in the Fuel System (DFI) chapter)
 - Air Switching Valve with Hoses (see Air Switching Valve Removal)
 - Air Suction Valve Cover Bolts [A] and Clamp
 - Air Suction Valve Cover [B]
 - Air Suction Valve [C]

Air Suction Valve Installation

- Install the air suction valve [A] so that its side where stopper is fixed with the screws [B] faces the front [C].
- Tighten:
 Torque - Air Suction Valve Cover Bolts: 9.8 N·m (1.0 kgf·m, 87 in·lb)

Air Suction Valve Inspection

- Remove the air suction valve (see Air Suction Valve Removal).
- Visually inspect the reeds for cracks, folds, warps, heat damage or other damage.
- If there is any doubt as to the condition of the reeds [A], replace the air suction valve as an assembly.
- Check the reed contact areas [B] of the valve holder for grooves, scratches, any signs of separation from the holder or heat damage.
- If there is any doubt as to the condition of the reed contact areas, replace the air suction valve as an assembly.
- If any carbon or other foreign particles have accumulated between the reed and the reed contact area, wash the valve assembly clean with a high-flash point solvent.

CAUTION

Do not scrape off the deposits with a scraper as this could damage the rubber, requiring replacement of the suction valve assembly.

Air Switching Valve Removal

- Remove:
 - Fuel Tank (see Fuel Tank Removal in the Fuel System (DFI) chapter)
 - Air Switching Valve Connector [A] (Disconnect)
 - Vacuum Switch Valve [B]
5-12 ENGINE TOP END

Clean Air System

Air Switching Valve Installation
- Install the vacuum switch valve so that the vacuum fitting [A] faces left side.
- Route the hoses correctly (see Cable, Wire, and Hose Routing section in the Appendix chapter).

Air Switching Valve Operation Test
- Refer to Air Switching Valve Operation Test in the Electrical System chapter.

Air Switching Valve Unit Test
- Refer to Air Switching Valve Unit Test in the Electrical System chapter.

Clean Air System Hose Inspection
- Be certain that all the hoses are routed without being flattened or kinked, and are connected correctly to the air cleaner housing, air switching valve, #1 and #2 throttle body holders and air suction valve covers.
- If they are not, correct them. Replace them if they are damaged.
Cylinder Head Cover

Cylinder Head Cover Removal
- Remove:
 - Fuel Tank (see Fuel Tank Removal in the Fuel System (DFI) chapter)
 - Air Cleaner Housing (see Air Cleaner Housing Removal in the Fuel System (DFI) chapter)
 - Air Suction Valve Cover [A] with Hose [B]
 - Stick Coils [C]
 - Baffle Plate
 - Cylinder Head Cover Bolts [D]
 - Cylinder Head Cover [E]

Cylinder Head Cover Installation
- Replace the head cover gasket [A] with a new one.
- Apply silicone sealant [B] to the cylinder head as shown.

 Sealant - Kawasaki Bond (Silicone Sealant): 92104-0004
- Install:
 - Dowel Pins [C]
 - Plug Hole Gaskets [D]

- Install:
 - Washers [A]
 - Cylinder Head Cover Bolts [B]
 - Install the washers with metal side [C] faces upward.
- Tighten:
 - Torque - Cylinder Head Cover Bolts: 9.8 N·m (1.0 kgf·m, 87 in·lb)

- Install the baffle plate [A].
 - Put the insulators [B] under the baffle plate and the washers [C] on the baffle plate.
 - Apply a non-permanent locking agent to the baffle plate bolts and torque them.

 Torque - Baffle Plate Bolts: 5.9 N·m (0.60 kgf·m, 52 in·lb)
5-14 ENGINE TOP END
Camshaft Chain Tensioner

Camshaft Chain Tensioner Removal

CAUTION
This is a non-return type camshaft chain tensioner. The push rod does not return to its original position once it moves out to take up camshaft chain slack. Observe all the rules listed below:
When removing the tensioner, do not take out the mounting bolts only halfway. Retightening the mounting bolts from this position could damage the tensioner and the camshaft chain. Once the bolts are loosened, the tensioner must be removed and reset as described in “Camshaft Chain Tensioner Installation.” Do not turn over the crankshaft while the tensioner is removed. This could upset the camshaft chain timing, and damage the valves.

- Remove:
 - Cap Bolt [A]
 - Washer [B]
 - Spring [C]
- Remove the mounting bolts [D] and take off the camshaft chain tensioner.

Camshaft Chain Tensioner Installation
- Release the stopper [A] and push the push rod [B] into the tensioner [C].
- Install the tensioner so that the stopper faces upward.
- Tighten the tensioner mounting bolts [A].
 Torque - Camshaft Chain Tensioner Mounting Bolts: 9.8 N·m (1.0 kgf-m, 87 in-lb)
- Install the spring and washer.
- Tighten the cap bolt [B].
 Torque - Camshaft Chain Tensioner Cap Bolt: 20 N·m (2.0 kgf-m, 15 ft-lb)
- Turn the crankshaft 2 turns clockwise to allow the tensioner to expand and recheck the camshaft chain timing.
Camshaft, Camshaft Chain

Camshaft Removal
- Remove:
 - Cylinder Head Cover (see Cylinder Head Cover Removal)
- Position the crankshaft as follows.
 - Remove the upper [A] and lower [B] caps on the clutch cover.

- Using a wrench on the crankshaft rotation bolt, turn the crankshaft clockwise until the 2|T mark line [A] on the timing rotor is aligned with the notch [B] in the edge of the upper hole [C] in the clutch cover.

- Remove:
 - Camshaft Chain Tensioner (see Camshaft Chain Tensioner Removal)
 - Camshaft Cap Bolts [A]
 - Camshaft Caps [B]
 - Camshafts [C]

CAUTION
The crankshaft may be turned while the camshafts are removed. Always pull the chain taut while turning the crankshaft. This avoids kinking the chain on the lower (crankshaft) sprocket. A kinked chain could damage both the chain and the sprocket.

Camshaft Installation
- Be sure to install the following parts.
 - Plug Hole Gaskets [A]
 - Dowel Pins [B]
5-16 ENGINE TOP END
Camshaft, Camshaft Chain

- Apply molybdenum disulfide oil solution to all cams [A] journals [B] and thrust blocks [C] with \(\times \) marks.
- If a new camshaft is to be used, apply a thin coat of molybdenum disulfide grease to the cam surfaces.

NOTE

○ The exhaust camshaft has a 2412 EX mark [D] and the inlet camshaft has a 2412 IN mark [E]. Be careful not to mix up these shafts.

- Position the crankshaft as follows.
- Pull the tension side (exhaust side) of the chain taut to install the chain.
- Engage the camshaft chain with the camshaft sprockets so that the timing marks on the sprockets are positioned as shown.
 ○ Using a wrench on the crankshaft rotation bolt, turn the crankshaft clockwise until the 2|T mark line [A] on the timing rotor is aligned with the notch [B] in the edge of the upper hole [C] in the clutch cover.
- If the clutch cover is removed, perform the next procedure.
 ○ Using a wrench on the crankshaft rotation bolt, turn the crankshaft clockwise until the 1|T mark line [A] on the timing rotor is aligned with the mating surface [B] of the crankcase halves.

http://mototh.com
Camshaft, Camshaft Chain

- The timing marks must be aligned with the cylinder head upper surface [C].
 - EX mark [D] (Between #1 Pin and #2 Pin)
 - IN mark [E] (Between #31 Pin and #32 Pin)
 - #1 Pin [F]
 - #2 Pin [G]
 - #31 Pin [H]
 - #32 Pin [J]

- Install the camshaft cap, while pushing the camshaft chain, tighten all camshaft bolts and chain guide bolts.

NOTE
- The exhaust cap has a “EX” mark [A] and the inlet cap has a “IN” mark [B]. Be careful not to mix up these caps.
- First tighten all the camshaft cap bolts evenly to seat the camshaft in place, then tighten all bolts following the specified tightening sequence.
 - Torque - Camshaft Cap Bolts (1 – 12): 12 N·m (1.2 kgf·m, 106 in·lb)

- Install:
 - Camshaft Chain Tensioner (see Camshaft Chain Tensioner Installation)
 - Cylinder Head Cover (see Cylinder Head Cover Installation)
5-18 ENGINE TOP END

Camshaft, Camshaft Chain

Camshaft and Sprocket Assembly
○ The inlet and exhaust sprockets are identical.
● Install the sprockets so that the marked (“IN” and “EX”) side faces to the right side.

CAUTION

<table>
<thead>
<tr>
<th>Inlet sprocket must use “IN” marked bolts holes [A]. Exhaust sprocket must use “EX” marked bolts holes [B].</th>
</tr>
</thead>
</table>

● Apply a non-permanent locking agent to the camshaft sprockets bolts and tighten them.

Torque - Camshaft Sprockets Bolts: 15 N·m (1.5 kgf-m, 11 ft-lb)

★ If a new camshaft is to be used, apply a thin coat of a molybdenum disulfide grease to the cam surfaces.

Camshaft, Camshaft Cap Wear
● Remove:
 Camshaft Caps (see Camshaft Removal)
● Cut strips of plastigage to journal width. Place a strip on each journal parallel to the camshaft installed in the correct position.
● Measure each clearance between the camshaft journal and the camshaft cap using plastigage (press gauge) [A].
● Tighten:

Torque - Camshaft Cap Bolts: 12 N·m (1.2 kgf-m, 106 in-lb)

NOTE
○ Do not turn the camshaft when the plastigage is between the journal and camshaft cap.

Camshaft Journal, Camshaft Cap Clearance
Standard: 0.028 – 0.071 mm (0.0011 – 0.0028 in.)
Service Limit: 0.16 mm (0.0063 in.)

★ If any clearance exceeds the service limit, measure the diameter of each camshaft journal with a micrometer.

Camshaft Journal Diameter
Standard: 23.950 – 23.972 mm (0.9429 – 0.9438 in.)
Service Limit: 23.92 mm (0.942 in.)

★ If the camshaft journal diameter is less than the service limit, replace the camshaft with a new one and measure the clearance again.
★ If the clearance still remains out of the limit, replace the cylinder head unit.

http://mototh.com
Camshaft, Camshaft Chain

Camshaft Runout
- Remove the camshaft (see Camshaft Removal).
- Set the camshaft in a camshaft alignment jig or on V blocks.
- Measure runout with a dial gauge at the specified place as shown.
- If the runout exceeds the service limit, replace the shaft.

Camshaft Runout

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TIR 0.02 mm (0.0008 in.) or less</td>
<td>TIR 0.1 mm (0.004 in.)</td>
</tr>
</tbody>
</table>

Cam Wear
- Remove the camshaft (see Camshaft Removal).
- Measure the height [A] of each cam with a micrometer.
- If the cams are worn down past the service limit, replace the camshaft.

Cam Height

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhaust</td>
<td>35.843 – 35.957 mm (1.4111 – 1.4156 in.)</td>
<td>35.74 mm (1.4071 in.)</td>
</tr>
<tr>
<td>Inlet</td>
<td>36.543 – 36.657 mm (1.4387 – 1.4432 in.)</td>
<td>36.44 mm (1.4346 in.)</td>
</tr>
</tbody>
</table>

Camshaft Chain Removal
- Split the crankcase (see Crankcase Splitting in the Crankshaft/Transmission chapter).
- Remove the camshaft chain [A] from the crankshaft sprocket.
5-20 ENGINE TOP END

Cylinder Head

Cylinder Compression Measurement

NOTE
○ Use the battery which is fully charged.

● Warm up the engine thoroughly.
● Stop the engine.
● Remove:
 Seat (see Seat Removal in the Frame chapter)
 Fuel Tank (see Fuel Tank Removal in the Fuel System (DFI) chapter)
 Air Cleaner Housing (see Air Cleaner Housing Removal in the Fuel System (DFI) chapter)
 Stick Coils (see Stick Coil (Ignition Coil together with Spark Plug Cap) Removal in the Electrical System chapter)
 Spark Plugs (see Spark Plug Replacement in the Periodic Maintenance chapter)

Owner’s Tool - Spark Plug Wrench, 16 mm: 92110-1132

NOTE
○ Reconnect the connectors of the air switching valve lead and the inlet air temperature sensor lead. When the ignition switch is turned ON with the above connectors disconnected, the service codes (13, 64) are stores in the ECU.

● Attach the compression gauge [A] and adapter [B] firmly into the spark plug hole.
○ Using the starter motor, turn the engine over with the throttle fully open until the compression gauge stops rising; the compression is the highest reading obtainable.

Special Tools - Compression Gauge, 20 kgf/cm²: 57001-221
Compression Gauge Adapter, M10 × 1.0: 57001-1317

Cylinder Compression
Usable Range: 961 – 1,471 kPa (9.8 – 15.0 kgf/cm², 139 – 213 psi) @400 r/min (rpm)

● Repeat the measurement for the other cylinders.
● Install the spark plugs.

Torque - Spark Plugs: 15 N·m (1.5 kgf-m, 11 ft·lb)
The following table should be consulted if the obtainable compression reading is not within the usable range.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Diagnosis</th>
<th>Remedy (Action)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon accumulation on piston and in</td>
<td>Incorrect cylinder head gasket thickness</td>
<td>Replace the gasket with a standard part.</td>
</tr>
<tr>
<td>combustion chamber possibly due to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>damaged valve stem oil seal and/or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>damaged piston oil rings (This may be</td>
<td></td>
<td></td>
</tr>
<tr>
<td>indicated by white exhaust smoke).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas leakage around cylinder head</td>
<td></td>
<td>Replace damaged gasket and check cylinder head warp.</td>
</tr>
<tr>
<td>Bad condition of valve seating</td>
<td></td>
<td>Repair if necessary.</td>
</tr>
<tr>
<td>Incorrect valve clearance</td>
<td></td>
<td>Adjust the valve clearance.</td>
</tr>
<tr>
<td>Incorrect piston/cylinder clearance</td>
<td></td>
<td>Replace the piston and/or cylinder.</td>
</tr>
<tr>
<td>Piston seizure</td>
<td></td>
<td>Inspect the cylinder and replace/repair the cylinder and/or piston as necessary.</td>
</tr>
<tr>
<td>Bad condition of piston ring and/or</td>
<td></td>
<td>Replace the piston and/or the piston rings.</td>
</tr>
<tr>
<td>piston ring grooves</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cylinder Head Removal

- Remove:
 - Exhaust Pipes (see Exhaust Pipe Removal)
 - Cylinder Head Cover (see Cylinder Head Cover Removal)
 - Camshafts (see Camshaft Removal)
 - Throttle Body Assy (see Throttle Body Assy Removal in the Fuel System (DFI) chapter)
 - Throttle Body Holder
 - Water Hose
 - Water Temperature Sensor Connector [A]
 - Front Camshaft Chain Guide

http://mototh.com
5-22 ENGINE TOP END

Cylinder Head

- Firstly remove the M6 cylinder head bolts and M6 cylinder bolts [A].
- Secondly, remove the M8 bolts [B].
- Thirdly, remove the M10 nut [C].
- Fourthly, remove the M10 bolts [D].

Cylinder Head Installation

NOTE

- The camshaft cap is machined with the cylinder head, so if a new cylinder head is installed, use the cap that is supplied with the new head.

- Install a new cylinder head gasket [A] and dowel pins [B].
Cylinder Head

- Apply molybdenum disulfide oil solution [A] to both sides of washers and the threads of bolts and nut.
 - M10 Cylinder Head Bolts [B]
 - M10 Cylinder Nut [C]
 - M8 Cylinder Bolt [D]

- Torque the all the bolts and nut following the tightening sequence [1 – 8].

Torque - Cylinder Head Bolts (M10):
 - First: 25 N·m (2.5 kgf·m, 18 ft·lb)
 - Final:
 - Used Bolts 49 N·m (5.0 kgf·m, 36 ft·lb)
 - New Bolts 54 N·m (5.5 kgf·m, 40 ft·lb)
 - Cylinder Nut (M10): 49 N·m (5.0 kgf·m, 36 ft·lb)
 - Cylinder Bolt (M8): 27.5 N·m (2.8 kgf·m, 20 ft·lb)

NOTE

- The tightening sequence No. 1 - No. 5 are the cylinder head bolts that are tightened between the cylinder head with the crankcase.
- The No. 6 is the cylinder head bolt that is tightened between the cylinder head with the cylinder.
- The No. 7 and No. 8 are the cylinder nut and cylinder bolt that are tightened between the cylinder and the crankcase.
5-24 ENGINE TOP END

Cylinder Head

- Tighten the M6 cylinder head bolts and M6 cylinder bolts [A].
 Torque - Cylinder Head Bolts (M6): 12 N·m (1.2 kgf·m, 106 in·lb)
 Cylinder Bolts (M6): 12 N·m (1.2 kgf·m, 106 in·lb)

- Install the front camshaft chain guide [A].
 Insert the end [B] of front camshaft chain guide into the hollow on the lower crankcase half.
- Install the removed parts (see appropriate chapters).

Cylinder Head Warp

- Clean the cylinder head.
- Lay a straightedge across the lower surface of the cylinder head at several positions.
- Use a thickness gauge [A] to measure the space between the straightedge [B] and the head.

 Cylinder Head Warp
 Standard: - - -
 Service Limit: 0.05 mm (0.002 in.)

★ If the cylinder head is warped more than the service limit, replace it.
★ If the cylinder head is warped less than the service limit, repair the head by rubbing the lower surface on emery paper secured to a surface plate (first No. 200, then No. 400).
Valves

Valve Clearance Inspection
● Refer to Valve Clearance Inspection in the Periodic Maintenance chapter.

Valve Clearance Adjustment
● Refer to Valve Clearance Adjustment in the Periodic Maintenance chapter.

Valve Removal
● Remove cylinder head (see Cylinder Head Removal).
● Remove the valve lifter and shim.
○ Mark and record the valve lifter and shim locations so they can be installed in their original positions.
● Using the valve spring compressor assembly, remove the valve.

Special Tools - Valve Spring Compressor Assembly: 57001-241 [A]
Valve Spring Compressor Adapter, Ø 21: 57001-1272 [B]

Valve Installation
● Replace the oil seal with a new one.
○ Apply engine oil to the oil seal lip.
● Apply a thin coat of molybdenum disulfide grease to the valve stem before valve installation.
● Install the springs so that the closed coil end faces downwards (the side painted in green faces upwards).

Valve Stem [A]
Oil Seal [B]
Spring Seat [C]
Closed Coil End [D]
Valve Spring [E]
Side Painted in Green [F]
Retainer [G]
Split Keepers [H]

Valve Guide Removal
● Remove:
 Valve (see Valve Removal)
 Oil Seal
 Spring Seat
● Heat the area around the valve guide to 120 – 150°C (248 – 302°F), and hammer lightly on the valve guide arbor [A] to remove the guide from the top of the head.

CAUTION
Do not heat the cylinder head with a torch. This will warp the cylinder head. Soak the cylinder head in oil and heat the oil.

Special Tool - Valve Guide Arbor, Ø 4.5: 57001-1331
5-26 ENGINE TOP END

Valves

Valve Guide Installation

- Apply oil to the valve guide outer surface before installation.
- Heat the area around the valve guide hole to about 120 – 150°C (248 – 302°F).
- Drive the valve guide in from the top of the head using the valve guide arbor. The flange stops the guide from going in too far.

Special Tool - Valve Guide Arbor, 4.5: 57001-1331

- Wait until the cylinder head cools down and then ream the valve guide with the valve guide reamer [A] even if the old guide is reused.
- Turn the reamer in a clockwise direction until the reamer turns freely in the guide. Never turn the reamer counterclockwise or it will be dulled.
- Once the guides are reamed they must be cleaned thoroughly.

Special Tool - Valve Guide Reamer, 4.5: 57001-1333

Valve-to-Guide Clearance Measurement (Wobble Method)

If a small bore gauge is not available, inspect the valve guide wear by measuring the valve to valve guide clearance with the wobble method as indicated below.

- Insert a new valve [A] into the guide [B] and set a dial gauge against the stem perpendicular to it as close as possible to the cylinder head mating surface.
- Move the stem back and forth [C] to measure valve/valve guide clearance.
- Repeat the measurement in a direction at a right angle to the first.
- If the reading exceeds the service limit, replace the guide.

NOTE

○ The reading is not actual valve/valve guide clearance because the measuring point is above the guide.

Valve/Valve Guide Clearance (Wobble Method)

Standard:

<table>
<thead>
<tr>
<th></th>
<th>Exhaust</th>
<th>Inlet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.07 – 0.14 mm (0.0028 – 0.0055 in.)</td>
<td>0.02 – 0.08 mm (0.0008 – 0.0032 in.)</td>
</tr>
</tbody>
</table>

Service Limit:

<table>
<thead>
<tr>
<th></th>
<th>Exhaust</th>
<th>Inlet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.27 mm (0.0106 in.)</td>
<td>0.22 mm (0.0087 in.)</td>
</tr>
</tbody>
</table>

http://mototh.com
Valves

Valve Seat Inspection
• Remove the valve (see Valve Removal).
• Check the valve seating surface [A] between the valve [B] and valve seat [C].
 ○ Measure the outside diameter [D] of the seating pattern on the valve seat.
 ★ If the outside diameter is too large or too small, repair the seat (see Valve Seat Repair).

Valve Seating Surface Outside Diameter
Standard:
Exhaust 27.6 – 27.8 mm (1.087 – 1.094 in.)
Inlet 32.6 – 32.8 mm (1.283 – 1.291 in.)

○ Measure the seat width [E] of the portion where there is no build-up carbon (white portion) of the valve seat with a vernier caliper.
 Good [F]
 ★ If the width is too wide [G], too narrow [H] or uneven [J], repair the seat (see Valve Seat Repair).

Valve Seating Surface Width
Standard:
Exhaust 0.5 – 1.0 mm (0.020 – 0.039 in.)
Inlet 0.5 – 1.0 mm (0.020 – 0.039 in.)

Valve Seat Repair
• Repair the valve seat with the valve seat cutters [A].

Special Tools - Valve Seat Cutter Holder Bar: 57001-1128 [C]
Valve Seat Cutter Holder, 4.5: 57001-1330 [B]
For Exhaust Valve Seat
Valve Seat Cutter, 45° - φ30: 57001-1187
Valve Seat Cutter, 32° - φ30: 57001-1120
Valve Seat Cutter, 60° - φ30: 57001-1123

For Inlet Valve Seat
Valve Seat Cutter, 45° - φ35: 57001-1116
Valve Seat Cutter, 32° - φ35: 57001-1121
Valve Seat Cutter, 55° - φ35: 57001-1247

★ If the manufacturer’s instructions are not available, use the following procedure.

http://mototh.com
5-28 ENGINE TOP END

Valves

Seat Cutter Operation Care
1. This valve seat cutter is developed to grind the valve for repair. Therefore the cutter must not be used for other purposes than seat repair.
2. Do not drop or shock the valve seat cutter, or the diamond particles may fall off.
3. Do not fail to apply engine oil to the valve seat cutter before grinding the seat surface. Also wash off ground particles sticking to the cutter with washing oil.

NOTE
○ Do not use a wire brush to remove the metal particles from the cutter. It will take off the diamond particles.

4. Setting the valve seat cutter holder in position, operate the cutter in one hand. Do not apply too much force to the diamond portion.

NOTE
○ Prior to grinding, apply engine oil to the cutter and during the operation, wash off any ground particles sticking to the cutter with washing oil.

5. After use, wash it with washing oil and apply thin layer of engine oil before storing.

Marks Stamped on the Cutter
The marks stamped on the back of the cutter [A] represent the following.
60° Cutter angle [B]
Ø37.5 Outer diameter of cutter [C]

Operating Procedures
• Clean the seat area carefully.
• Coat the seat with machinist’s dye.
• Fit a 45° cutter into the holder and slide it into the valve guide.
• Press down lightly on the handle and turn it right or left. Grind the seating surface only until it is smooth.

CAUTION
Do not grind the seat too much. Overgrinding will reduce valve clearance by sinking the valve into the head. If the valve sinks too far into the head, it will be impossible to adjust the clearance, and the cylinder head must be replaced.
Valves

- Measure the outside diameter of the seating surface with a vernier caliper.
- If the outside diameter of the seating surface is too small, repeat the 45° grind until the diameter is within the specified range.
 - Widened Width [A] of engagement by machining with 45° cutter
 - Ground Volume [B] by 32° cutter
 - 32° [C]
 - Correct Width [D]
 - Ground Volume [E] by 60° or 55° cutter
 - 60° or 55° [F]

- Measure the outside diameter of the seating surface with a vernier caliper.
- If the outside diameter of the seating surface is too small, repeat the 45° grind [A] until the diameter is within the specified range.
 - Original Seating Surface [B]

NOTE
- Remove all pittings of flaws from 45° ground surface.
- After grinding with 45° cutter, apply thin coat of machinist’s dye to seating surface. This makes seating surface distinct and 32° and 60° (or 55°) grinding operation easier.
- When the valve guide is replaced, be sure to grind with 45° cutter for centering and good contact.

- If the outside diameter [A] of the seating surface is too large, make the 32° grind described below.
- If the outside diameter of the seating surface is within the specified range, measure the seat width as described below.
- Grind the seat at a 32° angle [B] until the seat outside diameter is within the specified range.
- To make the 32° grind, fit a 32° cutter into the holder, and slide it into the valve guide.
- Turn the holder one turn at a time while pressing down very lightly. Check the seat after each turn.

CAUTION
- The 32° cutter removes material very quickly. Check the seat outside diameter frequently to prevent overgrinding.

- After making the 32° grind, return to the seat outside diameter measurement step above.
- To measure the seat width, use a vernier caliper to measure the width of the 45° angle portion of the seat at several places around the seat.
- If the seat width is too narrow, repeat the 45° grind until the seat is slightly too wide, and then return to the seat outside diameter measurement step above.
5-30 ENGINE TOP END

Valves

★ If the seat width is too wide, make the 60° or 55° [A] grind described below.
★ If the seat width is within the specified range, lap the valve to the seat as described below.
• Grind the seat at a 60° or 55° angle until the seat width is within the specified range.
 ○ To make the 60° or 55° grind, fit 60° or 55° cutter into the holder, and slide it into the valve guide.
 ○ Turn the holder, while pressing down lightly.
 ○ After making the 60° or 55° grind, return to the seat width measurement step above.

Correct Width [B]

• Lap the valve to the seat, once the seat width and outside diameter are within the ranges specified above.
 ○ Put a little coarse grinding compound on the face of the valve in a number of places around the valve head.
 ○ Spin the valve against the seat until the grinding compound produces a smooth, matched surface on both the seat and the valve.
 ○ Repeat the process with a fine grinding compound.
 Lapper [A]
 Valve Seat [B]
 Valve [C]

• The seating area should be marked about in the middle of the valve face.
★ If the seat area is not in the right place on the valve, check to be sure the valve is the correct part. If it is, it may have been refaced too much; replace it.
• Be sure to remove all grinding compound before assembly.
• When the engine is assembled, be sure to adjust the valve clearance (see Valve Clearance Adjustment in the Periodic Maintenance chapter).
Valves

Valve Seat Repair

START

Machinists dye on seat

45° Grind

Tool: 45° Cutter
Purpose: make seating area smooth and round.

Measure Seating Area O.D.

Tool: Vernier Caliper
Purpose: check seat O.D. against spec.

Results

Too small

45° Grind

Tool: 45° Cutter
Purpose: increase O.D. of seat area to spec.

OK

Too big

Machinists dye on seat

32° Grind

Tool: 32° Cutter
Purpose: reduce O.D. of seat area to spec.

Measure Seat Width

Tool: Vernier Caliper
Purpose: check seat width against spec.

Results

Too narrow

45° Grind

Tool: 45° Cutter
Purpose: increase width of seat area beyond spec to increase O.D.

OK

Too wide

Machinists dye on seat

60° or 55° Grind

Tool: 60° Cutter
Purpose: reduce seat width to specification.

Lap Valve

Tools: Valve Lapper, Grinding Compound
Purpose: perfectly match valve and seat area; check valve head for damage.

FINISHED

http://mototh.com
5-32 ENGINE TOP END

Cylinder, Pistons

Cylinder Removal

- Remove:
 - Cylinder Head (see Cylinder Head Removal)
 - Horn
- Remove:
 - Front Engine Mounting Bolts (Both Side) [A] (see Engine Removal in the Engine Removal/Installation chapter)
 - Front Engine Brackets (Both Side) [B] (see Engine Removal in the Engine Removal/Installation chapter)
 - Cylinder [C]

Cylinder Installation

NOTE

- If a new cylinder is used, use new piston ring.
- Install the dowel pins [A] and new cylinder gasket [B].

- The piston ring openings must be positioned as shown in the figure. The openings of the oil ring steel rails must be about 30 – 40° of angle from the opening of the top ring.
 - Top Ring [A]
 - Second Ring [B]
 - Oil Ring Steel Rails [C]
 - Oil Ring Expander [D]
 - Hollow [E]
 - 30 – 40° [F]

- Apply molybdenum disulfide oil solution to the cylinder bore, piston rings and piston.
- Prepare two auxiliary head bolts with their head cut.
 - Install the two bolts [A] diagonally in the crankcase.
- Position the crankshaft so that all the piston heads are almost level.
- Install the cylinder block.
 - Insert the piston rings with your thumbs.

Piston Removal

- Remove the cylinder (see Cylinder Removal).
- Place a clean cloth under the pistons and remove the piston pin snap ring [A] from the outside of each piston.
Cylinder, Pistons

- Remove the piston pins.
 Special Tool - Piston Pin Puller: 57001-1568 [A]
 Piston Pin Puller Adapter C: 57001-1657 [D]
 Center Bolt [B]
 Shaft of Piston [C]
- Remove the pistons.

- Carefully spread the ring opening with your thumbs and then push up on the opposite side of the ring [A] to remove it.
- Remove the 3-piece oil ring with your thumbs in the same manner.

Piston Installation
- Install the oil ring expander [A] in the bottom piston ring groove so the ends [B] butt together.
- Install the oil ring steel rails, one above the expander and one below it.
 ○ Spread the rail with your thumbs, but only enough to fit the rail over the piston.
 ○ Release the rail into the bottom piston ring groove.

 NOTE
 ○ The oil ring rails have no “top” or “bottom”.
- Do not mix up the top and second ring.
- Install the top ring [A] so that the “R” mark [B] faces up.
- Install the second ring [C] so that the “RN” mark [D] faces up.
NOTE
○ If a new piston is used, use new piston ring.
- Install the piston with its marking hollow facing forward.
- Fit a new piston pin snap ring into the side of the piston so that the ring opening [A] does not coincide with the slit [B] of the piston pin hole.
○ Apply molybdenum disulfide oil solution to the piston pins and piston journals.
○ When installing the piston pin snap ring, compress it only enough to install it and no more.

CAUTION
Do not reuse snap rings, as removal weakens and deforms them. They could fall out and score the cylinder wall.

- Install the cylinder (see Cylinder Installation).

Cylinder Wear
- Since there is a difference in cylinder wear in different directions, take a side-to-side and a front-to-back measurement at each of the two locations (total of four measurements) shown in the figure.
★ If any of the cylinder inside diameter measurements exceeds the service limit, replace the cylinder.
 10 mm (0.39 in.) [A]
 60 mm (2.36 in.) [B]

Cylinder Inside Diameter
- Standard: 82.994 – 83.006 mm (3.2675 – 3.2679 in.)
- Service Limit: 83.10 mm (3.2716 in.)

Piston Wear
- Measure the outside diameter [A] of each piston 18 mm (0.7087 in.) [B] up from the bottom of the piston at a right angle to the direction of the piston pin.
★ If the measurement is under service limit, replace the piston.

Piston Diameter
- Standard: 82.969 – 82.984 mm (3.2665 – 3.2671 in.)
- Service Limit: 82.82 mm (3.2606 in.)
Engine Top End 5-35

Cylinder, Pistons

Piston Ring, Piston Ring Groove Wear
- Check for uneven groove wear by inspecting the ring seating.
- The rings should fit perfectly parallel to groove surfaces.
- If not, replace the piston and all the piston rings.
- With the piston rings in their grooves, make several measurements with a thickness gauge [A] to determine piston ring/groove clearance.

Piston Ring/Groove Clearance

<table>
<thead>
<tr>
<th>Top</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>0.03 – 0.07 mm</td>
</tr>
<tr>
<td></td>
<td>(0.0012 – 0.0028 in.)</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.17 mm</td>
</tr>
<tr>
<td></td>
<td>(0.0067 in.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>0.02 – 0.06 mm</td>
</tr>
<tr>
<td></td>
<td>(0.0008 – 0.0024 in.)</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.16 mm</td>
</tr>
<tr>
<td></td>
<td>(0.0063 in.)</td>
</tr>
</tbody>
</table>

Piston Ring Groove Width

- Measure the piston ring groove width.
- Use a vernier caliper at several points around the piston.

Piston Ring Groove Width

<table>
<thead>
<tr>
<th>Top [A]</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>0.92 – 0.94 mm</td>
</tr>
<tr>
<td></td>
<td>(0.0362 – 0.0370 in.)</td>
</tr>
<tr>
<td>Service Limit</td>
<td>1.02 mm</td>
</tr>
<tr>
<td></td>
<td>(0.040 in.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second [B]</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>1.01 – 1.03 mm</td>
</tr>
<tr>
<td></td>
<td>(0.0398 – 0.0406 in.)</td>
</tr>
<tr>
<td>Service Limit</td>
<td>1.11 mm</td>
</tr>
<tr>
<td></td>
<td>(0.044 in.)</td>
</tr>
</tbody>
</table>

- If the width of any of the two grooves is wider than the service limit at any point, replace the piston.

Piston Ring Thickness

- Measure the piston ring thickness.
- Use the micrometer to measure at several points around the ring.

Piston Ring Thickness

<table>
<thead>
<tr>
<th>Top [A]</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>0.87 – 0.89 mm</td>
</tr>
<tr>
<td></td>
<td>(0.0342 – 0.0350 in.)</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.80 mm</td>
</tr>
<tr>
<td></td>
<td>(0.031 in.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second [B]</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>0.97 – 0.99 mm</td>
</tr>
<tr>
<td></td>
<td>(0.0382 – 0.0390 in.)</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.90 mm</td>
</tr>
<tr>
<td></td>
<td>(0.035 in.)</td>
</tr>
</tbody>
</table>

- If any of the measurements is less than the service limit on either of the rings, replace all the rings.

NOTE
- When using new rings in a used piston, check for uneven groove wear. The rings should fit perfectly parallel to the groove sides. If not, replace the piston.
5-36 ENGINE TOP END

Cylinder, Pistons

Piston Ring End Gap

- Place the piston ring [A] inside the cylinder, using the piston to locate the ring squarely in place. Set it close to the bottom of the cylinder, where cylinder wear is low.
- Measure the gap [B] between the ends of the ring with a thickness gauge.

Piston Ring End Gap

<table>
<thead>
<tr>
<th></th>
<th>Top</th>
<th>Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>0.25 – 0.40 mm (0.0098 – 0.0157 in.)</td>
<td>0.40 – 0.55 mm (0.0157 – 0.0217 in.)</td>
</tr>
<tr>
<td>Service Limit</td>
<td>0.7 mm (0.028 in.)</td>
<td>0.8 mm (0.031 in.)</td>
</tr>
</tbody>
</table>

If the end gap of either ring is greater than the service limit, replace all the rings.
Throttle Body Holder

Throttle Body Holder Installation
- Be sure to install the O-rings [A].
- Install the clamps [B] as shown and so that their projections fit [C] on the holes of the holders.
 ○ Be sure that the clamp bolt heads [D] face outwards.
- Tighten:

 Torque - Throttle Body Holder Bolts [E]: 12 N·m (1.2 kgf·m, 106 in·lb)
5-38 ENGINE TOP END

Muffler

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>To avoid a serious burn, do not remove the muffler when the engine is still hot. Wait until the muffler cool down.</td>
</tr>
</tbody>
</table>

Muffler Body Removal

- Remove:
 - Right Frame Cover (see Frame Cover Removal in the Frame chapter)
 - Remove the bolts and lift up the right footpeg stay [A].

- Remove the muffler body mounting bolts [A] and nut, and pull the muffler body [B] backward.

Exhaust Pipe Removal

- Remove:
 - Lower Fairing (see Lower Fairing Removal in the Frame chapter)
 - Center Fairing (see Center Fairing Removal in the Frame chapter)
 - Muffler Body Clamp Bolt [A]
 - Exhaust Pipe Manifold Holder Nuts [B]
 - Exhaust Pipe [C]
 - Gaskets
Muffler

Muffler Body and Exhaust Pipe Installation

- Replace the exhaust pipe gaskets [A] and muffler body connection gasket [B] with new ones and install them.
 - Install the muffler body connection gasket until it is bottomed so that the chamfer side [C] faces muffler body [D].
- Install:
 - Muffler Body
 - Exhaust Pipe [E]
- Tighten:
 - **Torque - Exhaust Pipe Manifold Holder Nut [F]:** 17 N·m (1.7 kgf·m, 12 ft·lb)
 - **Muffler Body Mounting Bolts (Front and Rear) [G]:** 20 N·m (2.0 kgf·m, 15 ft·lb)
- Tighten the muffler body clamp bolts [H].
 - Install the muffler body clamp bolt [H] as shown.

- Thoroughly warm up the engine, wait until the engine cools down, and retighten all the bolts and nuts.

![Diagram of muffler installation](http://mototh.com)
Clutch

Table of Contents

- Exploded View: 6-2
- Specifications: 6-4
- Special Tool and Sealant: 6-5
- Clutch Lever and Cable:
 - Clutch Lever Free Play Inspection: 6-6
 - Clutch Lever Free Play Adjustment: 6-6
 - Clutch Cable Removal: 6-6
 - Clutch Cable Installation: 6-6
 - Clutch Cable Lubrication: 6-6
 - Clutch Lever Installation: 6-7
 - Clutch Lever Adjustment: 6-7
- Clutch Cover:
 - Clutch Cover Removal: 6-8
 - Clutch Cover Installation: 6-8
- Release Shaft:
 - Release Shaft Removal: 6-9
 - Release Shaft Installation: 6-9
- Clutch Cover Disassembly: 6-9
- Clutch Cover Assembly: 6-10
- Clutch:
 - Clutch Removal: 6-11
 - Clutch Installation: 6-11
 - Clutch Plate, Wear, Damage Inspection: 6-13
 - Clutch Plate Warp Inspection: 6-13
 - Clutch Spring Free Length Measurement: 6-14
 - Clutch Housing Finger Inspection: 6-14
 - Clutch Housing Spline Inspection: 6-14

http://mototh.com
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>1</td>
<td>Upper Cap on Clutch Cover</td>
<td>3.9</td>
<td>0.40</td>
</tr>
<tr>
<td>2</td>
<td>Lower Cap on Clutch Cover</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3</td>
<td>Oil Filler Plug</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>Clutch Cover Mounting Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>Clutch Spring Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>Clutch Hub Nut</td>
<td>132</td>
<td>13.5</td>
</tr>
<tr>
<td>7</td>
<td>Oil Pump Sprocket Bolt</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>8</td>
<td>Clutch Lever Clamp Bolts</td>
<td>7.8</td>
<td>0.80</td>
</tr>
<tr>
<td>9</td>
<td>Oil Pump Chain Guide Bolts</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>10</td>
<td>Clutch Cable Holder Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>11</td>
<td>Clutch Cable Clamp Bolt</td>
<td>9.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

CL: Apply cable lubricant.
EO: Apply engine oil.
G: Apply grease.
HG: Apply high-temperature grease.
Lh: Left-hard Threads
M: Apply molybdenum disulfide grease.
R: Replacement Parts
W: Apply water.

http://mototh.com
6-4 CLUTCH

Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clutch Lever Free Play</td>
<td>2 ~ 3 mm (0.08 ~ 0.12 in.)</td>
<td>– ~ –</td>
</tr>
<tr>
<td>Clutch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friction Plate Thickness</td>
<td>2.92 ~ 3.08 mm (0.115 ~ 0.121 in.)</td>
<td>2.8 mm (0.110 in.)</td>
</tr>
<tr>
<td>Friction Plate Warp</td>
<td>0.15 mm (0.16 in.) or less</td>
<td>0.3 mm (0.012 in.)</td>
</tr>
<tr>
<td>Steel Plate Warp</td>
<td>0.2 mm (0.008 in.) or less</td>
<td>0.3 mm (0.012 in.)</td>
</tr>
<tr>
<td>Clutch Spring Free Length</td>
<td>33.6 mm (1.32 in.)</td>
<td>32.6 mm (1.28 in.)</td>
</tr>
</tbody>
</table>
Special Tool and Sealant

Clutch Holder: 57001-1243

Kawasaki Bond (Silicone Sealant): 92104-0004
6-6 CLUTCH

Clutch Lever and Cable

Clutch Lever Free Play Inspection
• Refer to Clutch Operation Inspection in the Periodic Maintenance chapter.

Clutch Lever Free Play Adjustment
• Refer to Clutch Operation Inspection in the Periodic Maintenance chapter.

Clutch Cable Removal
• Remove the right frame cover (see Frame Cover Removal in the Frame chapter).
• Slide the dust cover [A] at the middle of clutch cable out of place.
• Loosen the locknut [B], and turn the adjusting nut [C] to give the cable plenty of play.

• Screw in the adjuster.
• Line up the slots [A] in the clutch lever and adjuster [B], and then free the cable from the lever.
• Free the clutch inner cable tip from the clutch release lever.

• Disconnect the clutch cable clamp [A] on the cylinder head cover.
• Pull the clutch cable out of the frame.

Clutch Cable Installation
• Run the clutch cable correctly (see Cable, Wire, and Hose Routing section in the Appendix chapter).
• Adjust the clutch cable (see Clutch Operation Inspection in the Periodic Maintenance chapter).

Clutch Cable Lubrication
• Refer to Chassis Parts Lubrication in the Periodic Maintenance chapter.
Clutch Lever and Cable

Clutch Lever Installation

- Install the clutch lever so that the mating surface [B] of the clutch lever clamp is aligned with the punch mark [A].
- Tighten the upper clamp bolt first, and then the lower clamp bolt. There will be a gap at the lower part of the clamp after tightening.

Torque - Clutch Lever Clamp Bolts: 7.8 N·m (0.80 kgf·m, 69 in·lb)

Clutch Lever Adjustment

The adjuster has 5 positions so that the clutch lever position can be adjusted to suit the operator’s hand.

- Push the lever forward and turn the adjuster [A] to align the number with the arrow mark [B] on the lever holder.
- The distance from the grip to the lever is minimum at number 5 and maximum at number 1.

http://mototh.com
6-8 CLUTCH

Clutch Cover

Clutch Cover Removal

- Remove:
 - Engine Oil (drain, see Engine Oil Change in the Periodic Maintenance chapter)
 - Right Frame Cover (see Frame Cover Removal in the Frame chapter)
 - Clutch Cable Lower End [A]
 - Clutch Cover Mounting Bolts [B]

- Turn the release lever [A] toward the rear as shown, and remove the clutch cover [B].
- Push the release lever toward the front of the motorcycle and tape the release lever to the clutch cover to prevent the release shaft from falling out.

Clutch Cover Installation

- Apply silicone sealant to the area [A] where the mating surface of the crankcase touches the clutch cover gasket and to the crankshaft sensor lead grommet [B].
 - Sealant - Kawasaki Bond (Silicone Sealant): 92104-0004
- Be sure that the dowel pins [C] are in position.
- Replace the clutch cover gasket [D] with a new one.
- Tighten the clutch cover mounting bolts.
 - Torque - Clutch Cover Mounting Bolts: 9.8 N·m (1.0 kgf-m, 87 in·lb)
Clutch Cover

Release Shaft Removal

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not remove the clutch release lever and shaft assembly unless it is absolutely necessary. If removed, the oil seal replacement may be required.</td>
</tr>
</tbody>
</table>

- Remove the clutch cover (see Clutch Cover Removal).
- Pull the lever and shaft assembly straight out of the clutch cover.

Release Shaft Installation

- Apply high-temperature grease to the oil seal lips on the upper ridge of the clutch cover.
- Apply engine oil to the needle bearings in the hole of the clutch cover.
- Apply molybdenum disulfide grease to the pusher-holding portion [A] on the release shaft.
- Install the washer [B] and spring [C].
- Insert the release shaft straight into the upper hole of the clutch cover.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>When inserting the release shaft, be careful not to remove the spring of the oil seal.</td>
</tr>
</tbody>
</table>

- Fit the spring [A] as shown.
 - Release Shaft [B]
 - Clutch Cover [C]

Clutch Cover Disassembly

- Remove:
 - Oil Seal [A]
 - Needle Bearings [B]
Clutch Cover

- Remove the oil level gauge [A].

Clutch Cover Assembly

- Replace the needle bearings and oil seal with new ones.

NOTE

- Install the needle bearings so that the manufacture’s mark face out.
- Install the needle bearings [A] and oil seal [B] position as shown.
 Press [C] the bearing so that the bearing surface [D] is flush with the housing end of clutch cover [E].
- Apply water to the rubber of the oil gauge [A] and press [C] it so that the ring [B] face outside.
Clutch

Clutch Removal

- Remove:
 - Engine Oil (drain, see Engine Oil Change in the Periodic Maintenance chapter)
 - Clutch Cover (see Clutch Cover Removal)
 - Clutch Spring Bolts [A]
 - Clutch Springs
 - Clutch Spring Plate [B] (with thrust bearing and pusher [C])

- Remove:
 - Friction Plates, Steel Plates
 - Clutch Hub Nut [A]
 - Holding the clutch hub [B], remove the nut and washer.

 Special Tool - Clutch Holder [C]: 57001-1243

- Remove:
 - Clutch Hub
 - Spacer

- Remove the oil pump sprocket boat [A].

 NOTE
 - The oil pump sprocket bolt has a left-hand threads.

- Using the hole [B], pull out the sleeve [C].
- Remove the following as a set.
 - Clutch Housing [D]
 - Oil Pump Chain [E]
 - Oil Pump Sprocket [F]

- Unscrew the bolts [A] and remove the oil pump chain guide [B].

Clutch Installation

- Apply a non-permanent locking agent to the oil pump chain guide bolts and tighten them.

 Torque - Oil Pump Chain Guide Bolts: 12 N·m (1.2 kgf·m, 106 in·lb)

- Put the oil pump chain [A] on the clutch housing gear [B] and the oil pump sprocket [C].
6-12 CLUTCH

Clutch

- Be sure that the spacer [A] is in position.

- Insert the following on the drive shaft.
 Clutch Housing [A] with Chain [B] and Sprocket [C]
 Sleeve [D]
- Align [E] the hole on the oil pump sprocket with the oil pump shaft.

- Install the following parts on the drive shaft.
 Spacer [A]
 Clutch Hub [B]
 Washer [C]
 Nut [D]

○ Install the washer so that the OUTSIDE mark [A] faces outward.

○ Replace the clutch hub nut with a new one.
○ Holding the clutch hub, tighten the clutch hub nut.
 Special Tool - Clutch Holder: 57001-1243
 Torque - Clutch Hub Nut: 132 N·m (13.5 kgf·m, 98 ft·lb)
Clutch

• Install the friction plates and steel plates, starting with a friction plate and alternating them.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>If new dry friction plates and steel plates are installed, apply engine oil to the surfaces of each plate to avoid clutch plate seizure.</td>
</tr>
</tbody>
</table>

○ For the first steel plate [A], its thickness is 2.6 mm (0.10 in.). The others are 2.3 mm (0.09 in.).

○ Install the last friction plate [A] fitting the tangs in the grooves in the housing as shown.

• Apply molybdenum disulfide grease to the pusher ends [A] and install it in the clutch spring plate [B].

○ Apply engine oil to the bearing [C].

• Install the clutch spring plate and springs [D], and tighten the clutch spring bolts [E].

Torque - Clutch Spring Bolts: 9.8 N·m (1.0 kgf·m, 87 in·lb)

• Install the clutch cover (see Clutch Cover Installation).

Clutch Plate, Wear, Damage Inspection

• Visually inspect the friction and steel plates for signs of seizure, overheating (discoloration), or uneven wear.

• Measure the thickness of each friction plate [A] at several points.

★ If any plates show signs of damage, or if they have worn past the service limit, replace them with new ones.

Friction Plate Thickness

| Standard: 2.92 ~ 3.08 mm (0.115 ~ 0.121 in.) |
| Service Limit: 2.8 mm (0.110 in.) |

Clutch Plate Warp Inspection

• Place each friction plate or steel plate on a surface plate and measure the gap between the surface plate [A] and each friction plate or steel plate [B] with a thickness gauge [C]. The gap is the amount of friction or steel plate warp.

★ If any plate is warped over the service limit, replace it with a new one.

Friction and Steel Plate Warp

| Standard: 0.15 mm (0.006 in.) or less |
| Service Limit: 0.3 mm (0.012 in.) |
6-14 CLUTCH

Clutch

Clutch Spring Free Length Measurement
- Measure the free length of the clutch springs [A].
- If any spring is shorter than the service limit, it must be replaced.

<table>
<thead>
<tr>
<th>Clutch Spring Free Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard: 33.6 mm (1.32 in.)</td>
</tr>
<tr>
<td>Service Limit: 32.6 mm (1.28 in.)</td>
</tr>
</tbody>
</table>

Clutch Housing Finger Inspection
- Visually inspect the clutch housing fingers [A] where the friction plate tangs [B] hit them.
- If they are badly worn or if there are groove cuts where the tangs hit, replace the housing. Also, replace the friction plates if their tangs are damaged.

Clutch Housing Spline Inspection
- Visually inspect where the teeth [B] on the steel plates wear against the clutch hub splines [A].
- If there are notches worn into the splines, replace the clutch hub. Also, replace the steel plates if their teeth are damaged.
Engine Lubrication System

Table of Contents

- Exploded View ... 7-2
- Engine Oil Flow Chart ... 7-4
- Specifications ... 7-6
- Special Tools and Sealant .. 7-7
- Engine Oil and Oil Filter ... 7-8
 - Oil Level Inspection .. 7-8
 - Engine Oil Change .. 7-8
 - Oil Filter Replacement ... 7-8
- Oil Pan ... 7-9
 - Oil Pan Removal ... 7-9
 - Oil Pan Installation .. 7-10
- Oil Pressure Relief Valve ... 7-11
 - Oil Pressure Relief Valve Removal 7-11
 - Oil Pressure Relief Valve Installation 7-11
 - Oil Pressure Relief Valve Inspection 7-11
- Oil Pump ... 7-12
 - Oil Pump Removal .. 7-12
 - Oil Pump Installation .. 7-13
- Oil Pressure Measurement ... 7-14
 - Oil Pressure Measurement .. 7-14
- Oil Pressure Switch .. 7-15
 - Oil Pressure Switch Removal 7-15
 - Oil Pressure Switch Installation 7-15
<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>1</td>
<td>Engine Oil Drain Bolt</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>Filter Plate Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>3</td>
<td>Oil Filter</td>
<td>17.2</td>
<td>1.75</td>
</tr>
<tr>
<td>4</td>
<td>Holder Mounting Bolt</td>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td>5</td>
<td>Oil Pan Bolts</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>Oil Pipe Plate Bolt</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>7</td>
<td>Oil Pressure Relief Valve</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>Oil Pressure Switch</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>9</td>
<td>Oil Pump Cover Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>Oil Pump Sprocket Bolt</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>11</td>
<td>Oil Passage Plugs</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>12</td>
<td>Lower Fairing Bracket Bolts</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>13</td>
<td>Oil Pump Chain Guide Bolts</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>14</td>
<td>Oil Plate Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

EO: Apply engine oil.
G: Apply grease.
L: Apply a non-permanent locking agent.
Lh: Left-hand-threads
MO: Apply molybdenum disulfide oil solution.
 (mixture of the engine oil and molybdenum disulfide grease in a weight ratio 10 : 1)
R: Replacement Parts
SS: Apply silicone sealant (Kawasaki Bond: 56019-120).
Engine Oil Flow Chart

- Balancer Shaft Oil Passage
- Drive Shaft Oil Passage
- Oil Pipe
- Oil in Crank Room
- Oil Pipe
- Oil in Transmission Room
- Oil from Crank Room
- Plate
- Oil Screen
- Feed Pump
- Scavenge Pump
- Output Shaft Oil Passage
7-6 ENGINE LUBRICATION SYSTEM

Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Oil</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>API SE, SF or SG</td>
</tr>
<tr>
<td></td>
<td>API SH, SJ or SL with JASO MA</td>
</tr>
<tr>
<td>Viscosity</td>
<td>SAE 10W-40</td>
</tr>
<tr>
<td>Capacity:</td>
<td>1.7 L (1.8 US gt) (when filter is not removed)</td>
</tr>
<tr>
<td></td>
<td>1.9 L (2.0 US gt) (when filter is removed)</td>
</tr>
<tr>
<td></td>
<td>2.4 L (2.5 US gt) (when engine is completely dry)</td>
</tr>
<tr>
<td>Level</td>
<td>Between upper and lower level lines</td>
</tr>
<tr>
<td>Oil Pressure Measurement</td>
<td></td>
</tr>
<tr>
<td>Oil Pressure</td>
<td>216 – 294 kPa (2.2 – 3.0 kgf/cm², 31 – 43 psi) @4 000 r/min (rpm),</td>
</tr>
<tr>
<td></td>
<td>Oil Temperature 90°C (194°F)</td>
</tr>
</tbody>
</table>
Special Tools and Sealant

<table>
<thead>
<tr>
<th>Tool Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil Pressure Gauge, 10 kgf/cm²:</td>
<td>57001-164</td>
</tr>
<tr>
<td>Oil Pressure Gauge Adapter, PT3/8 x 19/in.:</td>
<td>57001-1233</td>
</tr>
<tr>
<td>Oil Filter Wrench:</td>
<td>57001-1249</td>
</tr>
<tr>
<td>Kawasaki Bond (Silicone Sealant):</td>
<td>56019-120</td>
</tr>
</tbody>
</table>

http://mototh.com
7-8 ENGINE LUBRICATION SYSTEM

Engine Oil and Oil Filter

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorcycle operation with insufficient, deteriorated, or contaminated engine oil will cause accelerated wear and may result in engine or transmission seizure, accident, and injury.</td>
</tr>
</tbody>
</table>

Oil Level Inspection

- Check that the engine oil level is between the upper [A] and lower [B] levels in the gauge.

NOTE
- Situate the motorcycle so that it is perpendicular to the ground.
- If the motorcycle has just been used, wait several minutes for all the oil to drain down.
- If the oil has just been changed, start the engine and run it for several minutes at idle speed. This fills the oil filter with oil. Stop the engine, then wait several minutes until the oil settles.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Racing the engine before the oil reaches every part can cause engine seizure. If the engine oil gets extremely low or if the oil pump or oil passages clog up or otherwise do not function properly, the oil pressure warning light will light. If this light stays on when the engine is running above idle speed, stop the engine immediately and find the cause.</td>
</tr>
</tbody>
</table>

- If the oil level is too high, remove the excess oil, using a syringe or some other suitable device.
- If the oil level is too low, add the correct amount of oil through the oil filter opening. Use the same type and make of oil that is already in the engine.

NOTE
- If the engine oil type and make are unknown, use any brand of the specified oil to top off the level in preference to running the engine with the oil level low. Then at your earliest convenience, change the oil completely.

Engine Oil Change

- Refer to Engine Oil Change in the Periodic Maintenance chapter.

Oil Filter Replacement

- Refer to Oil Filter Replacement in the Periodic Maintenance chapter.
Oil Pan Removal

- Remove:
 - Engine Oil (drain, see Engine Oil Change in the Periodic Maintenance chapter)
 - Exhaust Pipe (see Exhaust Pipe Removal in the Engine Top End chapter)
 - Muffler Body (see Muffler Body Removal in the Engine Top End chapter)
 - Oil Pan Bolts [A]
 - Oil Pan [B]
 - Gasket [C]
 - Damper [D]

- Remove the following from the oil pan as necessary.
 - Filter Plate Bolts [A]
 - Filter Plate [B]
 - Filter [C]

- Remove the following from the lower crankcase half as necessary.
 - Oil Screen [A]
 - Oil Pipe Plate Bolt [B]
 - Oil Pipe Plate [C]
 - Oil Pipes [D]
 - Oil Pressure Relief Valve [E]
Oil Pan Installation
- Apply grease to the O-rings on the oil pipes [A].
- Install the oil pipe plate [B] so that its guide portion [C] fits the breather pipe [D] as shown.
- Apply a non-permanent locking agent to the oil pipe plate bolt.

Torque - Oil Pipe Plate Bolt [E]: 9.8 N·m (1.0 kgf·m, 87 in·lb)

If the oil pressure relief valve [F] was removed, install it.
- Apply a non-permanent locking agent to the threads [G] of the oil pressure relief valve, and tighten it.

CAUTION
Do not apply too much non-permanent locking agent to the threads. This may block the oil passage.

Torque - Oil Pressure Relief Valve: 15 N·m (1.5 kgf·m, 11 ft·lb)

- Apply grease to the O-ring [A] on the oil screen [B] and install it on the lower crankcase half as shown.
- Be sure the damper [C] is on the end of the breather pipe [D].
- Replace the oil pan gasket with a new one.
- When installing the oil pan, align [A] the damper [B] on the breather pipe with the hollow [C] on the oil pan.
- Tighten:

Torque - Oil Pan Bolts: 12 N·m (1.2 kgf·m, 106 in·lb)

http://mototh.com
Oil Pressure Relief Valve

Oil Pressure Relief Valve Removal
• See Oil Pan Removal.

Oil Pressure Relief Valve Installation
• See Oil Pan Installation.

Oil Pressure Relief Valve Inspection
• Check to see if the valve [A] slides smoothly when pushing it in with a wooden or other soft rod, and see if it comes back to its seat by spring [B] pressure.

NOTE
○ Inspect the valve in its assembled state. Disassembly and assembly may change the valve performance.

★ If any rough spots are found during above inspection, wash the valve clean with a high-flash point solvent and blow out any foreign particles that may be in the valve with compressed air.

WARNING
Clean the oil pressure relief valve in a well-ventilated area, and take care that there is no spark or flame anywhere near the working area. Because of the danger of highly flammable liquids, do not use gasoline or low-flash point solvent.

★ If cleaning does not solve the problem, replace the oil pressure relief valve as an assembly. The oil pressure relief valve is precision made with no allowance for replacement of individual parts.
7-12 ENGINE LUBRICATION SYSTEM

Oil Pump

Oil Pump Removal

- **Drain:**
 - Engine Oil (see Engine Oil Change in the Periodic Maintenance chapter)
- **Remove:**
 - Clutch (see Clutch Removal in the Clutch chapter)
 - Oil Pump Cover Bolts [A]
 - Oil Pump Cover [B]

- **Remove:**
 - Inner Rotor [A] for Scavenge Pump
 - Outer Rotor [B] for Scavenge Pump

- **Remove:**
 - Dowel Pin [A]
 - Pin [B]
 - Oil Pump Body [C] with Oil Pump Shaft [D] and Pin

- **Remove:**
 - Inner Rotor [A] for Feed Pump
 - Outer Rotor [B] for Feed Pump
Oil Pump

Oil Pump Installation
• Apply molybdenum disulfide grease to the portion [A] of the oil pump shaft, as shown.
• Install:
 - Outer Rotor [B] for Feed Pump
 - Inner Rotor [C] for Feed Pump
 - Oil Pump Shaft [D] and Pin [E]
 - Dowel Pin [F]
 - Oil Pump Body [G]
 - Pin [H] and Inner Rotor [I] for Scavenge Pump
 - Outer Rotor [J] for Scavenge Pump
 - Oil Pump Cover [K]

NOTE
○ The scavenge pump rotors are wider than the feed pump rotors.

• Apply a non-permanent locking agent to the oil pump cover bolts and tighten them.

Torque - Oil Pump Cover Bolts: 9.8 N·m (1.0 kgf·m, 87 in·lb)
7-14 ENGINE LUBRICATION SYSTEM

Oil Pressure Measurement

Oil Pressure Measurement
• Remove the lower fairing (see Lower Fairing Removal in the Frame chapter).
• Remove the oil passage plug, and attach the adapter [A] and gauge [B] to the plug hole.

Special Tools - Oil Pressure Gauge, 10 kgf/cm²: 57001-164
Oil Pressure Gauge Adapter, PT3/8 × 19/in.: 57001-1233

• Start the engine and warm up the engine.
• Run the engine at the specified speed, and read the oil pressure gauge.
★ If the oil pressure is much lower than the standard, check the oil pump, relief valve, and/or crankshaft bearing insert wear immediately.
★ If the reading is much higher than the standard, check the oil passages for clogging.

Oil Pressure
Standard: 216 ~ 294 kPa (2.2 ~ 3.0 kgf/cm², 31 ~ 43 psi) @ 4 000 r/min (rpm), oil temperature. 90°C (194°F)

• Stop the engine.
• Remove the oil pressure gauge and adapter.

WARNING
Take care against burns from hot engine oil that will drain through the oil passage when the gauge adapter is removed.

• Apply a non-permanent locking agent to the oil passage plug, and install it.
Torque - Oil Passage Plug (Right): 20 N·m (2.0 kgf·m, 15 ft·lb)

http://mototh.com
Oil Pressure Switch

Oil Pressure Switch Removal
- Remove or drain:
 - Engine Oil (see Engine Oil Change in the Periodic Maintenance chapter)
 - Switch Cover [A]
 - Switch Terminal Bolt [B]
 - Oil Pressure Switch [C]

Oil Pressure Switch Installation
- Apply silicone sealant to the threads of the oil pressure switch and tighten it.

 Sealant - Kawasaki Bond (Silicone Sealant): 56019-120

 Torque - Oil Pressure Switch: 15 N·m (1.5 kgf·m, 11 ft·lb)

- Tighten the terminal bolt securely.
- Apply a small amount grease to the terminal so that grease should not close the holes [A] of the switch cover.
Engine Removal/Installation

Table of Contents

Exploded View .. 8-2
Engine Removal/Installation ... 8-4
 Engine Removal .. 8-4
8-2 ENGINE REMOVAL/INSTALLATION

Exploded View

http://mototh.com
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>1</td>
<td>Engine Mounting Bracket Bolts</td>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>Front Engine Mounting Bolts</td>
<td>44</td>
<td>4.5</td>
</tr>
<tr>
<td>3</td>
<td>Rear Engine Mounting Nuts</td>
<td>44</td>
<td>4.5</td>
</tr>
</tbody>
</table>

4. Engine Mounting Brackets
5. Collar
8-4 ENGINE REMOVAL/INSTALLATION

Engine Removal/Installation

Engine Removal
- Support the rear part of the swing arm with a stand.
- Squeeze the brake lever slowly and hold it with a band [A].

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be sure to hold the front brake when removing the engine, or the motorcycle may fall over. It could cause an accident and injury.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be sure to hold the front brake when removing the engine, or the motorcycle may fall over. The engine or the motorcycle could be damaged.</td>
</tr>
</tbody>
</table>

- **Drain:**
 - Engine Oil (see Engine Oil Change in the Periodic Maintenance chapter)
 - Coolant (see Coolant Change in the Periodic Maintenance chapter)

- **Remove:**
 - Seat (see Seat Removal in the Frame chapter)
 - Lower Fairing and Center Fairing (see Fairing section in the Frame chapter)
 - Side Covers (see Side Cover Removal in the Frame chapter)
 - Frame Covers (see Frame Cover Removal in the Frame chapter)
 - Radiator and Hoses (see Radiator and Radiator Fan Removal in the Cooling System chapter)

- **Unscrew the lower fairing bracket bolts (both sides) [A] and remove the brackets (both sides) [B].**

- **Disconnect the oil pressure switch terminal [A].**
Engine Removal/Installation

- Disconnect the crankshaft sensor lead connector [A].

- Remove:
 Exhaust Pipe (see Exhaust Pipe Removal in the Engine Top End chapter)
 Muffler Body (see Muffler Body Removal in the Engine Top End chapter)
 Fuel Tank (see Fuel Tank Removal in the Fuel System (DFI) chapter)
 Air Switching Valve and Hose (see Air Switching Valve Removal in the Engine Top End chapter)
 Air Cleaner Housing (see Air Cleaner Housing Removal in the Fuel System (DFI) chapter)
 Throttle Body Assy (see Throttle Body Removal in the Fuel System (DFI) chapter)
 Clutch Cable (see Clutch Cable Removal in the Clutch chapter)

- Remove:
 Stick Coils [A]
 Baffle Plate [B]

- Remove or disconnect:
 Water Temperature Sensor Lead Connector [A]
 Starter Motor Cable [B]
 Engine Ground Cable Terminal Bolt [C]
 Alternator Lead Connector [D]
 Sidestand Switch Lead Connector [E]
 Speed Sensor Lead Connector [F]
8-6 ENGINE REMOVAL/INSTALLATION

Engine Removal/Installation

- Remove the engine sprocket cover (see Engine Sprocket Removal in the Final Drive chapter).
- Remove the shift pedal [A] (see Shift Pedal Removal in the Crankshaft/Transmission chapter).
- Disconnect:
 - Oxygen Sensor Lead Connector [B]
 - Neutral Switch Lead Terminal [C]
- Remove the bracket [D] and the engine sprocket [E] (see Engine Sprocket Removal in the Final Drive chapter).

- Remove:
 - Horn Leads [A] (Disconnect)
 - Horn Bolt [B]
 - Horn [C]

- Support the engine with a stand or jack [A].
 - Put a wooden board [B] on the suitable stand.
- Remove the engine mounting bolts [C].
- Remove the engine mounting bracket bolts (both sides) [D] and remove the brackets [E].
- Remove the engine [F].

- Insert the rear engine mounting bolts from the left side of the engine and tighten the nuts.
- Install the engine mounting brackets [A] with the bolts [B].
- Insert the front engine mounting bolts [C] and tighten the bolts.
 - Position the collar [D] on the right engine mounting bracket.
Engine Removal/Installation

- Tighten:
 - Torque - Rear Engine Mounting Nuts: 44 N·m (4.5 kgf·m, 32 ft·lb)
 - Front Engine Mounting Bolts: 44 N·m (4.5 kgf·m, 32 ft·lb)
 - Engine Mounting Bracket bolts: 25 N·m (2.5 kgf·m, 18 ft·lb)

- Install the engine sprocket (see Engine Sprocket Installation in the Final Drive chapter).
- Run the leads, cables, and hoses correctly (see Cable, Wire, and Hose Routing section in the Appendix chapter).
- Install the removed parts (see appropriate chapters).
- Adjust:
 - Throttle Cables (see Throttle Control System Inspection in the Periodic Maintenance chapter)
 - Clutch Cable (see Clutch Operation Inspection in the Periodic Maintenance chapter)
 - Drive Chain (see Drive Chain Slack Adjustment in the Periodic Maintenance chapter)
- Fill the engine with engine oil (see Engine Oil Change in the Periodic Maintenance chapter).
- Fill the engine with coolant and bleed the air from the cooling system (see Coolant Change in the Periodic Maintenance chapter).
- Adjust the idling (see Idle Speed Adjustment in the Periodic Maintenance chapter).

http://mototh.com
Crankshaft/Transmission

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploded View</td>
<td>9-2</td>
</tr>
<tr>
<td>Specifications</td>
<td>9-6</td>
</tr>
<tr>
<td>Special Tools and Sealant</td>
<td>9-9</td>
</tr>
<tr>
<td>Crankcase Splitting</td>
<td>9-10</td>
</tr>
<tr>
<td>Crankcase Assembly</td>
<td>9-11</td>
</tr>
<tr>
<td>Crankshaft and Connecting Rods</td>
<td>9-17</td>
</tr>
<tr>
<td>Crankshaft Removal</td>
<td>9-17</td>
</tr>
<tr>
<td>Crankshaft Installation</td>
<td>9-17</td>
</tr>
<tr>
<td>Connecting Rod Removal</td>
<td>9-17</td>
</tr>
<tr>
<td>Connecting Rod Installation</td>
<td>9-18</td>
</tr>
<tr>
<td>Crankshaft/Connecting Rod Cleaning</td>
<td>9-21</td>
</tr>
<tr>
<td>Connecting Rod Bend</td>
<td>9-21</td>
</tr>
<tr>
<td>Connecting Rod Twist</td>
<td>9-22</td>
</tr>
<tr>
<td>Connecting Rod Big End Side Clearance</td>
<td>9-22</td>
</tr>
<tr>
<td>Connecting Rod Big End Bearing Insert/Crankpin Wear</td>
<td>9-22</td>
</tr>
<tr>
<td>Crankshaft Side Clearance</td>
<td>9-24</td>
</tr>
<tr>
<td>Crankshaft Runout</td>
<td>9-24</td>
</tr>
<tr>
<td>Crankshaft Main Bearing Insert/Journal Wear</td>
<td>9-24</td>
</tr>
<tr>
<td>Balancer</td>
<td>9-27</td>
</tr>
<tr>
<td>Balancer Removal</td>
<td>9-27</td>
</tr>
<tr>
<td>Balancer Installation</td>
<td>9-27</td>
</tr>
<tr>
<td>Balancer Shaft Bearing Insert/Journal Clearance</td>
<td>9-27</td>
</tr>
<tr>
<td>Transmission</td>
<td>9-29</td>
</tr>
<tr>
<td>Shift Pedal Removal</td>
<td>9-29</td>
</tr>
<tr>
<td>Shift Pedal Installation</td>
<td>9-29</td>
</tr>
<tr>
<td>External Shift Mechanism Removal</td>
<td>9-29</td>
</tr>
<tr>
<td>External Shift Mechanism Installation</td>
<td>9-30</td>
</tr>
<tr>
<td>External Shift Mechanism Inspection</td>
<td>9-31</td>
</tr>
<tr>
<td>Transmission Assy Removal</td>
<td>9-32</td>
</tr>
<tr>
<td>Transmission Assy Disassembly</td>
<td>9-33</td>
</tr>
<tr>
<td>Transmission Assy Assembly</td>
<td>9-33</td>
</tr>
<tr>
<td>Transmission Assy Installation</td>
<td>9-34</td>
</tr>
<tr>
<td>Transmission Shaft Removal</td>
<td>9-35</td>
</tr>
<tr>
<td>Transmission Shaft Disassembly</td>
<td>9-35</td>
</tr>
<tr>
<td>Transmission Shaft Assembly</td>
<td>9-36</td>
</tr>
<tr>
<td>Transmission Shaft Assembly</td>
<td>9-36</td>
</tr>
<tr>
<td>Shift Drum and Fork Removal</td>
<td>9-39</td>
</tr>
<tr>
<td>Shift Drum and Fork Installation</td>
<td>9-39</td>
</tr>
<tr>
<td>Shift Drum Disassembly</td>
<td>9-39</td>
</tr>
<tr>
<td>Shift Drum Assembly</td>
<td>9-39</td>
</tr>
<tr>
<td>Shift Drum/Assembly</td>
<td>9-39</td>
</tr>
<tr>
<td>Gear Dog and Gear Dog Hole Damage</td>
<td>9-40</td>
</tr>
<tr>
<td>Ball Bearing, Needle Bearing, and Oil Seal</td>
<td>9-41</td>
</tr>
<tr>
<td>Ball and Needle Bearing</td>
<td>9-41</td>
</tr>
<tr>
<td>Ball and Needle Bearing Wear</td>
<td>9-41</td>
</tr>
<tr>
<td>Oil Seal Inspection</td>
<td>9-41</td>
</tr>
</tbody>
</table>
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque (N·m)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Connecting Rod Big End Nuts</td>
<td>see Text</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Timing Rotor Bolt</td>
<td>40</td>
<td>4.1</td>
</tr>
<tr>
<td>3</td>
<td>Oil Plate Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>Breather Plate Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>Shift Shaft Return Spring Pin</td>
<td>29</td>
<td>2.9</td>
</tr>
<tr>
<td>6</td>
<td>Oil Pipe Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>7</td>
<td>Crankcase Bolts (M9, L = 113 mm)</td>
<td>44</td>
<td>4.5</td>
</tr>
<tr>
<td>8</td>
<td>Crankcase Bolts (M9, L = 83 mm)</td>
<td>44</td>
<td>4.5</td>
</tr>
<tr>
<td>9</td>
<td>Crankcase Bolts (M8, L = 73 mm)</td>
<td>35</td>
<td>3.6</td>
</tr>
<tr>
<td>10</td>
<td>Crankcase Bolts (M8, L = 60 mm)</td>
<td>35</td>
<td>3.6</td>
</tr>
<tr>
<td>11</td>
<td>Crankcase Bolts (M8, L = 110 mm)</td>
<td>27.5</td>
<td>2.8</td>
</tr>
<tr>
<td>12</td>
<td>Crankcase Bolts (M8, L = 50 mm)</td>
<td>27.5</td>
<td>2.8</td>
</tr>
<tr>
<td>13</td>
<td>Crankcase Bolts (M6)</td>
<td>19.6</td>
<td>2.0</td>
</tr>
<tr>
<td>14</td>
<td>Upper Crankcase Bolts</td>
<td>27.5</td>
<td>2.8</td>
</tr>
</tbody>
</table>

15. Do not apply any grease or oil.

- G: Apply grease.
- L: Apply a non-permanent locking agent.
- LG: Apply liquid gasket (Kawasaki Bond: 92104-1064).
- M: Apply molybdenum disulfide grease.
- MO: Apply molybdenum disulfide oil solution.
 - (mixture of the engine oil and molybdenum disulfide grease in a weight ratio 10 : 1)
- R: Replacement Parts
- S: Follow the specific tightening sequence.
- SS: Apply silicone sealant (Three Bond 1207B).
<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>1</td>
<td>Gear Positioning Lever Bolt</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>Transmission Case Bolts</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>Shift Drum Cam Bolt</td>
<td>12</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>Shift Drum Bearing Holder Screw</td>
<td>4.9</td>
<td>0.50</td>
</tr>
<tr>
<td>5</td>
<td>Shift Rod Plate Bolt</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>Neutral Switch Holder Screw</td>
<td>4.9</td>
<td>0.50</td>
</tr>
<tr>
<td>7</td>
<td>Neutral Switch</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>Shift Shaft Cover Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
<tr>
<td>9</td>
<td>Shift Shaft Cover Screw</td>
<td>4.9</td>
<td>0.50</td>
</tr>
</tbody>
</table>

EO: Apply engine oil.
G: Apply grease.
L: Apply a non-permanent locking agent.
MO: Apply molybdenum disulfide oil solution.
(mixture of the engine oil and molybdenum disulfide grease in a weight ratio 10 : 1)
R: Replacement Parts
9-6 CRANKSHAFT/TRANSMISSION

Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crankshaft, Connecting Rods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecting Rod Bend</td>
<td>– – –</td>
<td>TIR 0.2/100 mm (0.008/3.94 in.)</td>
</tr>
<tr>
<td>Connecting Rod Twist</td>
<td>– – –</td>
<td>TIR 0.2/100 mm (0.008/3.94 in.)</td>
</tr>
<tr>
<td>Connecting Rod Big End Side Clearance</td>
<td>0.13 – 0.38 mm</td>
<td>0.58 mm</td>
</tr>
<tr>
<td></td>
<td>(0.0051 – 0.0150 in.)</td>
<td>(0.023 in.)</td>
</tr>
<tr>
<td>Connecting Rod Big End Bearing Insert/Crankpin Clearance</td>
<td>0.017 – 0.041 mm</td>
<td>0.08 mm</td>
</tr>
<tr>
<td></td>
<td>(0.0007 – 0.0016 in.)</td>
<td>(0.0031 in.)</td>
</tr>
<tr>
<td>Crankpin Diameter:</td>
<td>37.984 – 38.000 mm</td>
<td>37.97 mm</td>
</tr>
<tr>
<td></td>
<td>(1.4954 – 1.4961 in.)</td>
<td>(1.4949 in.)</td>
</tr>
<tr>
<td>Marking:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>37.984 – 37.992 mm</td>
<td>– – –</td>
</tr>
<tr>
<td></td>
<td>(1.4954 – 1.4957 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>○</td>
<td>37.993 – 38.000 mm</td>
<td>– – –</td>
</tr>
<tr>
<td></td>
<td>(1.4958 – 1.4961 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Connecting Rod Big End Inside Diameter:</td>
<td>41.000 – 41.016 mm</td>
<td>– – –</td>
</tr>
<tr>
<td></td>
<td>(1.6142 – 1.6148 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Marking:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>41.000 – 41.008 mm</td>
<td>– – –</td>
</tr>
<tr>
<td></td>
<td>(1.6142 – 1.6145 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>○</td>
<td>41.009 – 41.016 mm</td>
<td>– – –</td>
</tr>
<tr>
<td></td>
<td>(1.6145 – 1.6148 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Connecting Rod Big End Bearing Insert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>1.475 – 1.480 mm</td>
<td>– – –</td>
</tr>
<tr>
<td></td>
<td>(0.05807 – 0.05827 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Black</td>
<td>1.480 – 1.485 mm</td>
<td>– – –</td>
</tr>
<tr>
<td></td>
<td>(0.05827 – 0.05846 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Blue</td>
<td>1.485 – 1.490 mm</td>
<td>– – –</td>
</tr>
<tr>
<td></td>
<td>(0.05846 – 0.05866 in.)</td>
<td>– – –</td>
</tr>
</tbody>
</table>

Connecting Rod Big End Bearing Insert Selection:

<table>
<thead>
<tr>
<th>Con-rod Big End Bore Diameter Marking</th>
<th>Crankpin Diameter Marking</th>
<th>Bearing Insert</th>
<th>Size</th>
<th>Color</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>○</td>
<td>Brown</td>
<td>1.480</td>
<td>1.485 mm</td>
<td>92139-0116</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>Black</td>
<td>1.480</td>
<td>1.485 mm</td>
<td>92139-0115</td>
</tr>
<tr>
<td>○</td>
<td>None</td>
<td>Blue</td>
<td>1.480</td>
<td>1.485 mm</td>
<td>92139-0114</td>
</tr>
</tbody>
</table>

Connecting Rod Bolt Stretch: (Usable Range)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New Connecting Rod</td>
<td>0.24 – 0.36 mm</td>
<td>– – –</td>
</tr>
<tr>
<td></td>
<td>(0.0094 – 0.0142 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Used Connecting Rod</td>
<td>0.20 – 0.32 mm</td>
<td>– – –</td>
</tr>
<tr>
<td></td>
<td>(0.0079 – 0.0126 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Crankshaft Side Clearance</td>
<td>0.05 – 0.20 mm</td>
<td>0.40 mm</td>
</tr>
<tr>
<td></td>
<td>(0.0020 – 0.0079 in.)</td>
<td>(0.0157 in.)</td>
</tr>
</tbody>
</table>
Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crankshaft Runout</td>
<td>TIR 0.02 mm (0.0008 in.) or less</td>
<td>TIR 0.05 mm (0.0020 in.)</td>
</tr>
<tr>
<td>Crankshaft Main Bearing Insert/Journal Clearance</td>
<td>0.012 – 0.036 mm (0.0005 – 0.0014 in.)</td>
<td>0.07 mm (0.0028 in.)</td>
</tr>
<tr>
<td>Crankshaft Main Journal Diameter:</td>
<td>37.984 – 38.000 mm (1.4954 – 1.4961 in.)</td>
<td>37.96 mm (1.4945 in.)</td>
</tr>
<tr>
<td>Marking:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>37.984 – 37.992 mm (1.4954 – 1.4957 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>1</td>
<td>37.993 – 38.000 mm (1.4958 – 1.4961 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Crankcase Main Bearing Inside Diameter:</td>
<td>41.000 – 41.016 mm (1.6142 – 1.6148 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Marking:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>○</td>
<td>41.000 – 41.008 mm (1.6142 – 1.6145 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>None</td>
<td>41.009 – 41.016 mm (1.6145 – 1.6148 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Crankshaft Main Bearing Insert Thickness:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>1.490 – 1.494 mm (0.0587 – 0.0588 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Black</td>
<td>1.494 – 1.498 mm (0.0588 – 0.0590 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Blue</td>
<td>1.498 – 1.502 mm (0.0590 – 0.0591 in.)</td>
<td>– – –</td>
</tr>
</tbody>
</table>

Crankshaft Main Bearing Insert Selection:

<table>
<thead>
<tr>
<th>Crankcase Main Bearing Inside Diameter Marking</th>
<th>Crankshaft Main Journal Diameter Marking</th>
<th>Bearing Insert*</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>1</td>
<td>Brown</td>
</tr>
<tr>
<td>None</td>
<td>1</td>
<td>Black</td>
</tr>
<tr>
<td>○</td>
<td>None</td>
<td>Blue</td>
</tr>
</tbody>
</table>

*The bearing inserts for Nos. 1, 2 and 3 journals have oil grooves.

Balancer Shaft

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balancer Shaft Bearing Insert/Journal Clearance</td>
<td>0.011 – 0.033 mm (0.0004 – 0.0013 in.)</td>
<td>0.08 mm (0.0031 in.)</td>
</tr>
<tr>
<td>Balancer Shaft Journal Diameter:</td>
<td>27.987 – 28.000 mm (1.1019 – 1.1024 in.)</td>
<td>27.96 mm (1.1108 in.)</td>
</tr>
<tr>
<td>Marking:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>27.987 – 27.993 mm (1.1019 – 1.1021 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>○</td>
<td>27.994 – 28.000 mm (1.1021 – 1.1024 in.)</td>
<td>– – –</td>
</tr>
</tbody>
</table>

http://mototh.com
9-8 CRANKSHAFT/TRANSMISSION

Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crankcase Bearing Bore Diameter:</td>
<td>31.000 – 31.016 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.2205 – 1.2228 in.)</td>
<td></td>
</tr>
<tr>
<td>Marking:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>○</td>
<td>31.000 – 31.008 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.2205 – 1.2208 in.)</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>31.009 – 31.016 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.2208 – 1.2211 in.)</td>
<td></td>
</tr>
<tr>
<td>Balancer Shaft Bearing Insert Thickness:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown</td>
<td>1.490 – 1.494 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0587 – 0.0588 in.)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>1.494 – 1.498 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0588 – 0.0590 in.)</td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>1.498 – 1.502 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0590 – 0.0591 in.)</td>
<td></td>
</tr>
<tr>
<td>Balancer Shaft Bearing Insert Selection:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crankcase Bearing Bore Diameter Marking</th>
<th>Balancer Shaft Journal Diameter Marking</th>
<th>Bearing Insert*</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>○</td>
<td>Brown</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92139-0119</td>
</tr>
<tr>
<td>○</td>
<td>None</td>
<td>Black</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92139-0118</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>Blue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>92139-0117</td>
</tr>
</tbody>
</table>

*The bearing inserts for Nos. 1, 2 journals have oil grooves.

Transmission

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift Fork Ear Thickness</td>
<td>5.9 – 6.0 mm</td>
<td>5.8 mm</td>
</tr>
<tr>
<td></td>
<td>(0.232 – 0.236 in.)</td>
<td>(0.228 in.)</td>
</tr>
<tr>
<td>Gear Groove Width</td>
<td>6.05 – 6.15 mm</td>
<td>6.25 mm</td>
</tr>
<tr>
<td></td>
<td>(0.238 – 0.242 in.)</td>
<td>(0.246 in.)</td>
</tr>
<tr>
<td>Shift Fork Guide Pin Diameter</td>
<td>6.9 – 7.0 mm</td>
<td>6.8 mm</td>
</tr>
<tr>
<td></td>
<td>(0.272 – 0.276 in.)</td>
<td>(0.268 in.)</td>
</tr>
<tr>
<td>Shift Drum Groove Width</td>
<td>7.05 – 7.20 mm</td>
<td>7.3 mm</td>
</tr>
<tr>
<td></td>
<td>(0.278 – 0.283 in.)</td>
<td>(0.287 in.)</td>
</tr>
</tbody>
</table>
Special Tools and Sealant

Outside Circlip Pliers: 57001-144

Kawasaki Bond: 92104-1064

Bearing Driver Set: 57001-1129
9-10 CRANKSHAFT/TRANSMISSION

Crankcase Splitting

Crankcase Splitting

• Remove:
 Engine (see Engine Removal in the Engine Removal/Installation chapter)
 Cylinder (see Cylinder Removal in the Engine Top End chapter)
 Pistons (see Piston Removal in the Engine Top End chapter)
 Starter Motor (see Starter Motor Removal in the Electrical System chapter)
 Clutch (see Clutch Removal in the Clutch chapter)
 Transmission Assy (see Transmission Assy Removal)
 Alternator Rotor (see Alternator Rotor Removal in the Electrical System chapter)

• Remove the upper crankcase bolts (M8) [A] and the washers.

• Remove the oil pan, relief valve, oil screen and oil pipes (see Oil Pan Removal in the Engine Lubrication System chapter).

• Remove the lower crankcase bolts.
 Firstly loosen the M6 bolts, secondly the M8 bolts and lastly the M9 bolts.
 M6 Bolts [A]
 M8 Bolts [B]
 M9 Bolts [C] and Washers

• Tap lightly around the crankcase mating surface with a plastic mallet, and split the crankcase. Take care not to damage the crankcase.
Crankcase Splitting

If the oil pie is to be removed, follow the next procedure.
○ Unscrew the bolts [A] and remove the oil pipe [B].

○ Prepare a ø5 mm rod [B], and insert it to the hole of the upper crankcase half.
○ Remove the oil pipe [A], tapping [C] the rod as shown.

If the breather plate [A] is to be removed, follow the next procedure.
○ Remove the oil pipe (see above).
○ Cut the gasket around the plate [B].
○ Remove:
 Breather Plate Bolts [C]
 Breather Plate with Pipe

Crankcase Assembly

The upper and lower crankcase halves are machined at the factory in the assembled state, so the crankcase halves must be replaced as a set.

• With a high-flash point solvent, clean off the mating surfaces of the crankcases halves and wipe dry.
• Using compressed air, blow out the oil passages in the crankcase halves.
• If the oil plate [A] on the upper crankcase half was removed, install it as shown.
• Apply a non-permanent locking agent to the oil plate bolts and torque them.

Torque - Oil Plate Bolts [B]: 9.8 N·m (1.0 N·m, 87 in·lb)
9-12 CRANKSHAFT/TRANSMISSION

Crankcase Splitting

- Press and insert [A] the new needle bearing [B] for the shift drum until it is bottomed.
 Special Tool - Bearing Driver Set: 57001-1129

- Press and insert [C] the new needle bearing [D] for the shift shaft so that the bearing surface is flush with the end of the hole.
 Special Tool - Bearing Driver Set: 57001-1129

 Lower Crankcase Half [E]

- Apply silicone sealant to the breather plate mating surface [A] 1 mm (0.04 in.) or more thick, and then install the breather plate.
 Sealant - Three Bond 1207B

 NOTE
 ○ Make the application finish within 7 minutes when the liquid gasket to the mating surface of the breather plate is applied.
 ○ Moreover fit the plate and tighten the bolts just after application of the liquid gasket.

- Apply a non-permanent locking agent to the threads and tighten the bolts [A].
 Torque - Breather Plate Bolts: 9.8 N·m (1.0 kgf-m, 87 in·lb)

- Install the breather pipe [A].
 ○ Align the white mark [B] on the pipe with the white mark [C] on the breather fitting.
 ○ Install the clamp [D] so that the pinch portions [E] face the white marks.

- Install the oil pipe [A] so that its flange [B] touches to the surface [C] of the upper crankcase half.
- Apply grease to the O-ring [D] on the oil pipe.
Crankcase Splitting

- Install the crankshaft assembly and the balancer shaft assembly on the upper crankcase half.

- Be sure to hang the camshaft chain [A] on the crankshaft.

- Be sure that the dowel pins [A] are in position.

- Set the bearing groove [A] on the positioning ring [B] as shown.
9-14 CRANKSHAFT/TRANSMISSION

Crankcase Splitting

- Apply liquid gasket [A] to the mating surface of the lower crankcase half.
 Sealant - Kawasaki Bond: 92104-1064

NOTE
- Especially, apply a liquid gasket carefully so that it shall be filled up on the grooves.

CAUTION
- Do not apply liquid gasket around the crankshaft main bearing inserts, and oil passage holes.
- Do not apply liquid gasket to the oil passage [B].
Crankcase Splitting

- Fit the lower crankcase half to the upper crankcase half.
 - Insert [A] the breather pipe [B] on the upper crankcase half through the hole [C] on the lower crankcase half.

NOTE

- Make the application finish within 20 minutes when the liquid gasket to the mating surface of the lower crankcase half is applied.
- Moreover, fit the case and tighten the case bolts just after finishing the application of the liquid gasket.

- The M9 bolts [1 ~ 6] (see the next figure) have copper plated washers. Replace them with new ones.
- Apply molybdenum disulfide oil solution to both sides [A] of the M9 bolts washers and the threads [B] of the M9 bolts.

- Apply molybdenum disulfide oil solution to flange [A] and the threads [B] of the M8 bolts which is tightening order is [7 ~ 10] only (see the next figure).
9-16 CRANKSHAFT/TRANSMISSION

Crankcase Splitting

- Tighten the lower crankcase bolts using the following steps.
 - Following the sequence numbers on the lower crankcase half, tighten the M9 bolts [1, 2] L= 113 mm (4.45 in.) with washers.
 - Torque - Crankcase Bolts (M9): 44 N·m (4.5 kgf·m, 32 ft·lb)
 - Tighten the M9 bolts [3, 4] L= 83 mm (3.27 in.) with washers.
 - Torque - Crankcase Bolts (M9): 44 N·m (4.5 kgf·m, 32 ft·lb)
 - Tighten the M9 bolts [5, 6] L= 113 mm (4.45 in.) with washers.
 - Torque - Crankcase Bolts (M9): 44 N·m (4.5 kgf·m, 32 ft·lb)
 - Tighten the M8 bolts [7 ∼ 10].
 - Torque - Crankcase Bolts (M8): 35 N·m (3.6 kgf·m, 26 ft·lb)
 - Tighten the M8 bolts [A] (Do not apply molybdenum oil solution).
 - Torque - Crankcase Bolts (M8): 27.5 N·m (2.8 kgf·m, 20 ft·lb)
 - Tighten the M6 bolts [B].
 - Torque - Crankcase Bolts (M6): 19.6 N·m (2.0 kgf·m, 15 ft·lb)

- Tighten the upper crankcase bolts.
 - The upper crankcase bolts have copper plated washers. Replace them with new ones.
 - Torque - Upper Crankcase Bolts (M8) [A]: 27.5 N·m (2.8 kgf·m, 20 ft·lb)

- After tightening all crankcase bolts, check the following items.
 - Crankshaft and balancer shafts turn freely.
Crankshaft and Connecting Rods

Crankshaft Removal
- Split the crankcase (see Crankcase Splitting).
- Remove the crankshaft [A].

Crankshaft Installation

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>If the crankshaft, bearing inserts, or crankcase halves are replaced with new ones, select the bearing inserts and check clearance with a plastigage (press gauge) before assembling engine to be sure the correct bearing inserts are installed.</td>
</tr>
</tbody>
</table>
- Apply molybdenum disulfide oil solution to the crankshaft main bearing inserts.
- Install the crankshaft with the camshaft chain [A] hanging on it.

Connecting Rod Removal
- Split the crankcase (see Crankcase Splitting).
- Remove the connecting rod nuts [A].
- Remove the connecting shaft.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark and record the locations of the connecting rods and their big end caps so that they can be reassembled in their original positions.</td>
</tr>
</tbody>
</table>
- Remove the connecting rods from the crankshaft.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discard the connecting rod bolts. To prevent damage to the crankpin surfaces, do not allow the connecting rod bolts to bump against the crankpins.</td>
</tr>
</tbody>
</table>
9-18 CRANKSHAFT/TRANSMISSION

Crankshaft and Connecting Rods

Connecting Rod Installation

<table>
<thead>
<tr>
<th>CAUTION</th>
<th>To minimize vibration, the connecting rods should have the same weight mark.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Big End Cap [A]</td>
</tr>
<tr>
<td></td>
<td>Connecting Rod [B]</td>
</tr>
<tr>
<td></td>
<td>Weight Mark, Alphabet [C]</td>
</tr>
<tr>
<td></td>
<td>Diameter Mark [D]: “○” or no mark</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
<th>If the connecting rods, big end bearing inserts, or crankshaft are replaced with new ones, select the bearing insert and check clearance with a plastic gauge (press gauge) before assembling engine to be sure the correct bearing inserts are installed.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Apply molybdenum disulfide grease [A] to the outer surface of the upper insert and the inner surface of the connecting rod big end.</td>
</tr>
<tr>
<td></td>
<td>• Apply molybdenum disulfide oil solution [B] to the inner surfaces of upper and lower bearing inserts.</td>
</tr>
<tr>
<td></td>
<td>○ The molybdenum disulfide oil solution is a mixture of engine oil and molybdenum disulfide grease with a weight ratio (10 : 1).</td>
</tr>
<tr>
<td></td>
<td>○ Do not apply any grease or oil [C] to the cap inside and cap insert outside.</td>
</tr>
<tr>
<td></td>
<td>○ Install the inserts so that their nails [D] are on the same side and fit them into the recess of the connecting rod and cap.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
<th>Wrong application of oil and grease could cause bearing damage.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○ When installing the inserts [A], be careful not to damage the insert surface with the edge of the connecting rod [B] or the cap [C]. One way to install inserts is as follows:</td>
</tr>
<tr>
<td></td>
<td>Installation [D] to Cap</td>
</tr>
<tr>
<td></td>
<td>Installation [E] to Connecting Rod</td>
</tr>
<tr>
<td></td>
<td>Push [F]</td>
</tr>
<tr>
<td></td>
<td>Spare Dowel Pin [G]</td>
</tr>
<tr>
<td></td>
<td>Connecting Rod Bolts [H]</td>
</tr>
<tr>
<td></td>
<td>• Install the cap on the connecting rod, aligning the weight and diameter marks.</td>
</tr>
<tr>
<td></td>
<td>• Remove debris and clean the surface of inserts.</td>
</tr>
<tr>
<td></td>
<td>• Apply molybdenum disulfide oil solution [MO] to the threads and seating surfaces of the big end nuts and bolts.</td>
</tr>
</tbody>
</table>

[Diagram of connecting rod installation]

[Diagram of bearing insert installation]

[Diagram of molybdenum disulfide oil solution]

[Diagram of dowel pin and connecting rod bolts installation]

http://mototh.com
Crankshaft and Connecting Rods

- Install the crankshaft (see Crankshaft Installation).
- Install each connecting rod on its original crankpin.

NOTE
- Install each connecting rod so that its oil jet [A] faces the exhaust side (the front [B]) (see Engine Oil Flow Chart in the Engine Lubrication System chapter).
- The connecting rod big end is bolted using the “plastic region fastening method”.
- This method precisely achieves the needed clamping force without exceeding it unnecessarily, allowing the use of thinner, lighter bolts further decreasing connecting rod weight.
- There are two types of the plastic region fastening. One is a bolt length measurement method and other is a rotation angle method. Observe one of the following two, but the bolt length measurement method is preferable because this is a more reliable way to tighten the big end nuts.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>The connecting rod bolts are designed to stretch when tightened. Never reuse the connecting rod bolts. See the table below for correct bolt and nut usage.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be careful not to overtighten the nuts. The bolts must be positioned on the seating surface correctly to prevent the bolt heads from hitting the crankcase.</td>
</tr>
</tbody>
</table>

(1) Bolt Length Measurement Method
- Be sure to clean the bolts, nuts, and connecting rods thoroughly with a high-flash point solvent, because the new connecting rods, bolts, and nuts are treated with an anti-rust solution.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean the bolts, nuts, and connecting rods in a well-ventilated area, and take care that there is no spark or flame anywhere near the working area. This includes any appliance with a pilot light. Because of the danger of highly flammable liquids, do not use gasoline or low-flash point solvents to clean them.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediately dry the bolts and nuts with compressed air after cleaning. Clean and dry the bolts and nuts completely.</td>
</tr>
</tbody>
</table>
Crankshaft and Connecting Rods

- Install new bolts in reused connecting rods.
- Dent both bolt head and bolt tip with a punch as shown.
- Before tightening, use a point micrometer [A] to measure the length of new connecting rod bolts and record the values to find the bolt stretch.

 Connecting Rod [B]
 Mark here with a punch [C].
 Nuts [D]
 Fit micrometer pins into punch marks [E].

- Apply a small amount of molybdenum disulfide oil solution to the following:
 Threads of Nuts and Bolts
 Seating Surfaces of Nuts and Con-rods

- Tighten the big end nuts until the bolt elongation reaches the length specified in the table.
- Check the length [F] of the connecting rod bolts.
 - If the stretch is more than the usable range, the bolt has stretched too much. An overelongated bolt may break in use.

<table>
<thead>
<tr>
<th>Connecting Rod Assy</th>
<th>Bolt</th>
<th>Nut</th>
<th>Usable Range of Connecting Rod Bolt Stretch</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>Use the bolts attached to new con-rod.</td>
<td>Attached to new con-rod.</td>
<td>0.24 – 0.36 mm (0.0094 – 0.0142 in.)</td>
</tr>
<tr>
<td>Used</td>
<td>Replace the bolts with new ones.</td>
<td>Used</td>
<td>0.20 – 0.32 mm (0.0079 – 0.0126 in.)</td>
</tr>
</tbody>
</table>

(2) Rotation Angle Method

- If you don’t have a point micrometer, you may tighten the nuts using the "Rotation Angle Method".
- Be sure to clean the bolts and nuts thoroughly with a high-flash point solvent, because the new bolts and nuts are treated with an anti-rust solution.

WARNING

Clean the bolts and nuts in a well-ventilated area, and take care that there is no spark or flame anywhere near the working area. This includes any appliance with a pilot light. Because of the danger or highly flammable liquids, do not use gasoline or low-flash point solvents to clean them.

CAUTION

Immediately dry the bolts and nuts with compressed air after cleaning. Clean and dry the bolts and nuts completely.

http://mototh.com
Crankshaft and Connecting Rods

- Install new bolts in reused connecting rods.
- Apply a small amount of molybdenum disulfide oil to the following:
 Threads [A] of Nuts and Bolts
 Seating Surfaces [B] of Nuts and Con-rods

- First, tighten the nuts to the specified torque. See the table below.
- Next, tighten the nuts 120° ±5°.
 ○ Mark [A] the connecting rod big end caps and nuts so that nuts can be turned 120° [B] properly.

```
<table>
<thead>
<tr>
<th>Connecting Rod Assy</th>
<th>Bolt</th>
<th>Nut</th>
<th>Torque + Angle N·m (kgf·m, ft·lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>Used</td>
<td>Attached to new con-rod</td>
<td>18 (1.8, 13.0) + 120°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New</td>
<td>20 (2.0, 14.5) + 120°</td>
</tr>
<tr>
<td>Used</td>
<td>Replace the bolts with new ones.</td>
<td>Used</td>
<td>24 (2.4, 17.4) + 120°</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New</td>
<td>25 (2.6, 18.8) + 120°</td>
</tr>
</tbody>
</table>
```

Crankshaft/Connecting Rod Cleaning

- After removing the connecting rods from the crankshaft, clean them with a high-flash point solvent.
- Blow the crankshaft oil passages with compressed air to remove any foreign particles or residue that may have accumulated in the passages.

Connecting Rod Bend

- Remove the connecting rod big end bearing inserts, and reinstall the connecting rod big end cap.
- Select an arbor [A] of the same diameter as the connecting rod big end, and insert the arbor through the connecting rod big end.
- Select an arbor of the same diameter as the piston pin and at least 100 mm (3.94 in.) long, and insert the arbor [B] through the connecting rod small end.
- On a surface plate, set the big-end arbor on V block [C].
- With the connecting rod held vertically, use a height gauge to measure the difference in the height of the arbor above the surface plate over a 100 mm (3.94 in.) length to determine the amount of connecting rod bend.
 ★ If connecting rod bend exceeds the service limit, the connecting rod must be replaced.

Connecting Rod Bend

Service Limit: TIR 0.2/100 mm (0.008/3.94 in.)
Crankshaft and Connecting Rods

Connecting Rod Twist
- With the big-end arbor [A] still on V block [C], hold the connecting rod horizontally and measure the amount that the arbor [B] varies from being paralleled with the surface plate over a 100 mm (3.94 in.) length of the arbor to determine the amount of connecting rod twist.
- If connecting rod twist exceeds the service limit, the connecting rod must be replaced.

Connecting Rod Twist
- Service Limit: TIR 0.2/100 mm (0.008/3.94 in.)

Connecting Rod Big End Side Clearance
- Measure connecting rod big end side clearance.
- Insert a thickness gauge [A] between the big end and either crank web to determine clearance.

Connecting Rod Big End Side Clearance
- Standard: 0.13 – 0.38 mm (0.0051 – 0.0150 in.)
- Service Limit: 0.58 mm (0.023 in.)
- If the clearance exceeds the service limit, replace the connecting rod with new one and then check clearance again. If clearance is too large after connecting rod replacement, the crankshaft also must be replaced.

Connecting Rod Big End Bearing Insert/Crankpin Wear
- Measure the bearing insert/crankpin [B] clearance with plastigage [A].
- Tighten the big end nuts to the specified torque (see Connecting Rod Installation).

NOTE
- Do not move the connecting rod and crankshaft during clearance measurement.

CAUTION
- After measurement, replace the connecting rod bolts.

Connecting Rod Big End Bearing Insert/Crankpin Clearance
- Standard: 0.017 – 0.041 mm (0.0001 – 0.0016 in.)
- Service Limit: 0.08 mm (0.0031 in.)
- If the clearance is within the standard, no bearing replacement is required.
- If the clearance is between 0.042 mm (0.00165 in.) and the service limit (0.08 mm, 0.0031 in.), replace the bearing inserts [A] with inserts painted blue [B]. Check insert/crankpin clearance with the plastigage. The clearance may exceed the standard slightly, but it must not be less than the minimum in order to avoid bearing seizure.
- If the clearance exceeds the service limit, measure the diameter of the crankpins.

Crankpin Diameter
- Standard: 37.984 – 38.000 mm (1.4954 – 1.4961 in.)
- Service Limit: 37.97 mm (1.4949 in.)
Crankshaft and Connecting Rods

If any crankpin has worn past the service limit, replace the crankshaft with a new one.

If the measured crankpin diameters are not less than the service limit, but do not coincide with the original diameter markings on the crankshaft, make new marks on it.

Crankpin Diameter Marks

- **None** 37.984 – 37.992 mm (1.4954 – 1.4957 in.)
- **Δ** 37.993 – 38.000 mm (1.4958 – 1.4961 in.)

△: Crankpin Diameter Marks, "○" or no mark.

- Measure the connecting rod big end inside diameter, and mark each connecting rod big end in accordance with the inside diameter.
- Tighten the connecting rod big end nuts to the specified torque (see Connecting Rod Installation).

NOTE

○ The mark already on the big end should almost coincide with the measurement.

Connecting Rod Big End Inside Diameter Marks

- **None** 41.000 – 41.008 mm (1.6142 – 1.6145 in.)
- **○** 41.009 – 41.016 mm (1.6145 – 1.6148 in.)

Big End Cap [A]
Connecting Rod [B]
Weight Mark, Alphabet [C]
Diameter Mark (Around Weight Mark) [D]: "○" or no mark

- Select the proper bearing insert [A] in accordance with the combination of the connecting rod and crankshaft coding.

Size Color [B]

<table>
<thead>
<tr>
<th>Con-rod Big End Inside Diameter Marking</th>
<th>Crankpin Diameter Marking</th>
<th>Bearing Insert</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>○</td>
<td>Brown 92139-0116</td>
</tr>
<tr>
<td>None</td>
<td>None</td>
<td>Black 92139-0115</td>
</tr>
<tr>
<td>○</td>
<td>○</td>
<td>Blue 92139-0114</td>
</tr>
</tbody>
</table>

- Install the new inserts in the connecting rod and check insert/crankpin clearance with the plastigage.

http://mototh.com
Crankshaft and Connecting Rods

Crankshaft Side Clearance

- Insert a thickness gauge [A] between the crankcase main bearing and the crank web at the No. 2 journal [B] to determine clearance.

- If the clearance exceeds the service limit, replace the crankcase halves as a set.

NOTE

○ The upper and lower crankcase halves are machined at the factory in the assembled state, so the crankcase halves must be replaced as a set.

Crankshaft Side Clearance

<table>
<thead>
<tr>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 – 0.20 mm (0.0020 – 0.0079 in.)</td>
<td>0.40 mm (0.0157 in.)</td>
</tr>
</tbody>
</table>

Crankshaft Runout

- Measure the crankshaft runout.

- If the measurement exceeds the service limit, replace the crankshaft.

Crankshaft Runout

<table>
<thead>
<tr>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIR 0.02 mm (0.0008 in.) or less</td>
<td>TIR 0.05 mm (0.0020 in.)</td>
</tr>
</tbody>
</table>

Crankshaft Main Bearing Insert/Journal Wear

- Using a plastigage (press gauge) [A], measure the bearing insert/journal [B] clearance.

NOTE

○ Tighten the crankcase bolts to the specified torque (see Crankcase Assembly).

○ Do not turn the crankshaft during clearance measurement.

○ Journal clearance less than 0.025 mm (0.00098 in.) cannot be measured by plastigage, however, using genuine parts maintains the minimum standard clearance.

Crankshaft Main Bearing Insert/Journal Clearance

<table>
<thead>
<tr>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.012 – 0.036 mm (0.0005 – 0.0014 in.)</td>
<td>0.07 mm (0.0028 in.)</td>
</tr>
</tbody>
</table>

- If the clearance is within the standard, no bearing replacement is required.

- If the clearance is between 0.037 mm (0.0015 in.) and the service limit (0.07 mm, 0.0028 in.), replace the bearing inserts [A] with inserts painted blue [B]. Check insert/journal clearance with the plastigage. The clearance may exceed the standard slightly, but it must not be less than the minimum in order to avoid bearing seizure.

- If the clearance exceeds the service limit, measure the diameter of the crankshaft main journal.
Crankshaft and Connecting Rods

Crankshaft Main Journal Diameter
Standard: 37.984 – 38.000 mm (1.4954 – 1.4961 in.)
Service Limit: 37.96 mm (1.4945 in.)
★If any journal has worn past the service limit, replace the crankshaft with a new one.
★If the measured journal diameters are not less than the service limit, but do not coincide with the original diameter markings on the crankshaft, make new marks on it.

Crankshaft Main Journal Diameter Marks
None 37.984 – 37.992 mm (1.4954 – 1.4957 in.)
1 37.993 – 38.000 mm (1.4958 – 1.4961 in.)
□: Crankshaft Main Journal Diameter Marks, “1” or no mark.

- Measure the main bearing inside diameter, and mark the upper crankcase half in accordance with the inside diameter.
- Crankcase Main Bearing Inside Diameter Marks: “○” or no mark.
- Tighten the crankcase bolts to the specified torque (see Crankcase Assembly).

NOTE
○The mark already on the upper crankcase half should almost coincide with the measurement.

Crankcase Main Bearing Inside Diameter Marks
○ 41.000 – 41.008 mm (1.6142 – 1.6145 in.)
None 41.009 – 41.016 mm (1.6145 – 1.6148 in.)
□□□: Crankcase Main Bearing Inside Diameter Marks, “○” mark or no mark

[A] No.1 Journal
[B] No.2 Journal
[C] No.3 Journal

- Select the proper bearing insert [A] in accordance with the combination of the crankcase and crankshaft coding.
- Size Color [B]

<table>
<thead>
<tr>
<th>Crankcase Main Bearing Inside Diameter Marking</th>
<th>Crankshaft Main Journal Diameter Marking</th>
<th>Bearing Insert*</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>1</td>
<td>Brown</td>
</tr>
<tr>
<td>None</td>
<td>1</td>
<td>Black</td>
</tr>
<tr>
<td>○</td>
<td>None</td>
<td>Blue</td>
</tr>
</tbody>
</table>

* The bearing inserts for Nos. 1, 2 and 3 journals have oil groove.
Crankshaft and Connecting Rods

- Install the new inserts in the crankcase halves and check insert/journal clearance with the plastigage.
Balancer

Balancer Removal
- Split the crankcase (see Crankcase Splitting).
- Pull the balancer shaft with the balancer gear out of the crankcase.

Balancer Installation
- Apply molybdenum disulfide oil solution to the inside of the balancer shaft bearing insert.
- Assemble the crankcase (see Crankcase Assembly).

Balancer Shaft Bearing Insert/Journal Clearance
- Measure the bearing insert/journal clearance using a plastigage.
 ○ Split the crankcase and wipe each bearing insert and journal surface clean of oil.
 ○ Cut strips of plastigage to bearing insert width, and place a strip on each journal parallel to the balancer shaft so that the plastigage will be compressed between the journal and the bearing insert.
 ○ Install the lower crankcase half, and tighten the case bolts to the specified torque (see Crankcase Assembly).

NOTE
- Do not turn the balancer shaft during clearance measurement.
- Remove the lower crankcase half and measure the plastigage width [A] to determine the bearing insert/journal [B] clearance.

 Balancer Shaft Bearing Insert/Journal Clearance
 Standard: 0.011 – 0.033 mm (0.0004 – 0.0013 in.)
 Service Limit: 0.08 mm (0.0031 in.)

★ If the clearance is within the standard, no bearing insert replacement is required.

★ If the clearance is between 0.050 mm and the service limit (0.09 mm), replace the bearing inserts [A] with inserts painted blue [B]. Check insert/journal clearance with a plastigage. The clearance may exceed the standard slightly, but it must not be less than the minimum in order to avoid bearing seizure.

★ If the clearance exceeds the service limit, measure the diameter of the balancer shaft journal.

Balancer Shaft Journal Diameter
Standard: 27.987 – 28.000 mm (1.1019 – 1.1024 in.)
Service Limit: 27.96 mm (1.1008 in.)
If either journal has worn past the service limit, replace the balancer shaft with a new one.

If the measured journal diameters are not less than the service limit, but do not coincide with the original diameter markings on the balancer shaft, write new marks on it.

Balancer Shaft Diameter Marks

<table>
<thead>
<tr>
<th>None</th>
<th>27.987 – 27.993 mm (1.1019 – 1.1021 in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>27.994 – 28.000 mm (1.1021 – 1.1024 in.)</td>
</tr>
</tbody>
</table>

△: Balancer Shaft Journal Diameter Marks, "○" mark or no mark.

- Put the lower crankcase half on the upper crankcase half without bearing inserts, and tighten the case bolts to the specified torque and sequence (see Crankcase Assembly).
- Measure the crankcase bearing bore diameter for the balancer shaft, and mark the upper crankcase half in accordance with the bore diameter.

NOTE

○ The mark already on the upper crankcase half should almost coincide with the measurement.

Crankcase Bearing Bore Diameter Marks

<table>
<thead>
<tr>
<th>○</th>
<th>31.000 – 31.008 mm (1.2205 – 1.2208 in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>31.009 – 31.016 mm (1.2208 – 1.2211 in.)</td>
</tr>
</tbody>
</table>

□□: Crankcase Bearing Bore Diameter Marks, "○" mark or no mark.

[A] No. 1 Journal
[B] No. 2 Journal

- Select the proper bearing insert in accordance with the combination of the crankcase and the balancer shaft coding.
- Install the new inserts in the crankcase and check insert/journal clearance with a plastigage.

Balancer Shaft Bearing Insert Selection

<table>
<thead>
<tr>
<th>Crankcase Main Bearing Bore Diameter Mark</th>
<th>Crankshaft Main Journal Diameter Mark</th>
<th>Bearing Insert*</th>
<th>Size</th>
<th>Color</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>○</td>
<td>Brown</td>
<td></td>
<td></td>
<td>92139-0119</td>
</tr>
<tr>
<td>○</td>
<td>None</td>
<td>Black</td>
<td></td>
<td></td>
<td>92139-0118</td>
</tr>
<tr>
<td>None</td>
<td>○</td>
<td>Blue</td>
<td></td>
<td></td>
<td>92139-0117</td>
</tr>
</tbody>
</table>
Transmission

Shift Pedal Removal
- Remove:
 - Shift Lever Bolt [A]
 - Shift Lever [B]

Shift Pedal Installation
- Align the mark [A] on the shift shaft with the slit [B] on the shift lever.
- Tighten the shift lever bolt securely.

- Be sure the shift pedal position is as shown.
 - Shift Pedal Damper [A]
 - Bottom [B] of Left Footpeg Stay
 - Shift Lever [C]
 - Bolt [D] of Left Footpeg Stay

External Shift Mechanism Removal
- Remove:
 - Engine Oil (drain, see Engine Oil Change in the Periodic Maintenance chapter)
 - Shift Pedal (see Shift Pedal Removal)
 - Engine Sprocket (see Engine Sprocket Removal in the Final Drive)
 - Neutral Switch Lead Connector (Disconnect)
 - Shift Shaft Cover Bolts [A]
 - Shift Shaft Cover Screw [B]
 - Shift Shaft Cover [C]

- Remove the shift shaft assembly [A].
Transmission

- Remove:
 - Clutch (see Clutch Removal in the Clutch chapter)
 - Gear Positioning Lever Bolt [A]
 - Gear Positioning Lever [B], Spacer, Washer and Spring

External Shift Mechanism Installation
- Install the gear positioning lever [A] as shown.
 - Spring [B]
 - Washer [C]
 - Spacer [D]
 - Bolt [E]
- Hook the spring at gear positioning lever, pushing up [F] the hook portion, as shown.
- Apply a non-permanent locking agent to the gear positioning lever bolt and torque it.
 Torque - Gear Positioning Lever Bolt: 12 N·m (1.2 kgf·m, 106 in·lb)
- Install the shift shaft assembly.
 - Apply [A] molybdenum disulfide oil solution to the rubbing surface between the lever [B] and pawl [C] and move them two or three times up and down to lubricate them.
 - Be sure that the washer [A] is on the shaft.
 - Be sure that the spring hook portions [B] are as shown.
Transmission

- When the new needle bearing [A] is installed in the shift shaft cover [B], press and insert the new needle bearing until it is bottomed.

 Special Tool - Bearing Driver Set: 57001-1129

- When the new oil seal [C] is installed in the shift cover, press and insert the new oil seal so that its surface is flush with the end of the hole.

 Special Tool - Bearing Driver Set: 57001-1129

- Install the shift shaft cover.
 ○ Be sure that the dowel pins [A] are in position.
 ○ Install new gasket [B].

- Apply a non-permanent locking agent to the shift shaft cover screw [A] and bolts [B, C] and torque them.
 ○ Do not apply a non-permanent locking agent to the shift shaft cover bolts [D, E].

 Torque - Shift Shaft Cover Bolts: 9.8 N·m (1.0 kgf·m, 87 in·lb)
 Torque - Shift Shaft Cover Screw: 4.9 N·m (0.50 kgf·m, 43 in·lb)

External Shift Mechanism Inspection

- Examine the shift shaft [A] for any damage.
 ★ If the shaft is bent, straighten or replace it.
 ★ If the serration [B] are damaged, replace the shaft.
 ★ If the springs [C] are damaged in any way, replace them.
 ★ If the shift mechanism arm [D] is damaged in any way, replace the arm.

- Check the return spring pin [A] is not loose.
 ★ If it is loose, unscrew it, apply a non-permanent locking agent to the threads, and tighten it.

 Torque - Shift Shaft Return Spring Pin: 29 N·m (2.9 kgf·m, 21 ft·lb)
9-32 CRANKSHAFT/TRANSMISSION

Transmission

- Check the gear positioning lever [A] and its spring for breaks or distortion.
 - If the lever or spring are damaged in any way, replace them.
- Visually inspect the shift drum cam [B].
 - If they are badly worn or if they show any damage, replace it.

Transmission Assy Removal

- Remove:
 - Shift Shaft Assembly (see External Shift Mechanism Removal)
 - Neutral Switch Holder Bolt [A]
 - Neutral Switch Holder [B] and Pin
 - Shift Drum Holder [C] and Pin

- Remove:
 - Collar [A]
 - O-ring [B]

- Remove:
 - Clutch (see Clutch Removal in the Clutch chapter)
 - Transmission Case Bolts [A]
 - If the transmission assy is to be disassembled, remove the following.
 - Shift Rod Plate Bolt [B]
 - Shift Rod Plate [C]
 - Gear Positioning Lever Bolt [D]
 - Gear Positioning Lever [E] with Spring, Washer and Spacer

- Pull the transmission assy [A] out of the crankcase.
Transmission

Transmission Assy Disassembly
• Remove the transmission assy (see Transmission Assy Removal)
• Remove the following from the transmission case [A].
 Shift Rods [B]
 Shift Forks [C]
 Drive Shaft [D]
 Output Shaft [E]

• Remove:
 Shift Drum Cam Bolt [A]
 Shift Drum [B] and Pin
 Shift Drum [C]

Transmission Assy Assembly
• When the new ball bearings [A] are installed in the transmission case [B], press and insert them until they are bot-
tomed.

 Special Tool - Bearing Driver Set 57001-1129
9-34 CRANKSHAFT/TRANSMISSION

Transmission

- Install the following on the transmission case [A].
 - Shift Drum [B]
 - Pin [C]
 - Shift Drum Cam [D]
- Align the pin with the hole on the shift drum cam.
- Apply a non-permanent locking agent to the shift drum cam bolt and torque it.
 Torque - Shift Drum Cam Bolt: 12 N·m (1.2 kgf·m, 106 in·lb)

- Install the following as a set.
 - Drive Shaft [F]
 - Output Shaft [G]
- Install the forks as shown.
- Position the one [H] with shortest ears on the drive shaft and place the pin in the center groove in the shift drum.
- The two forks [J] on the output shaft are identical.
- Install the shift rods, noting the groove position.
- The rod [K] length of the output shaft side is shorter than the rod [L] length of the drive shaft side.
- Apply molybdenum disulfide oil solution to the transmission gears shown with X marks [M].
- Be sure that the spacer [P] is on the output shaft.

Transmission Assy Installation

- Assemble the transmission assy (see Transmission Assy Assembly).
- Be sure that the dowel pins [A] are in position.
- Apply grease to the O-ring [B] on the oil pipe.
- Install the transmission assy on the crankcase.
- Tighten the transmission case bolts.
 Torque - Transmission Case Bolts: 20 N·m (2.0 kgf·m, 15 ft·lb)
Transmission

- Install the gear positioning lever (see External Shift Mechanism Installation).
- Install the shift rod plate.

Transmission Rod Plate Bolt: 9.8 N·m (1.0 kgf·m, 87 in·lb)

- Set the gear positioning lever to the neutral position [A].
- Check that the drive and output shaft turn freely.

- Install:
 - Pin [A]
 - Shift Drum Holder [B]
 - Pin [C]
 - Neutral Switch Holder [D]
 - Neutral Switch Holder Screw [E]

○ Apply a non-permanent locking agent to the neutral switch holder screw and torque it.

Torque - Neutral Switch Holder Screw: 4.9 N·m (0.50 kgf·m, 43 in·lb)

- Apply grease to the O-ring [A] and install its position [B] on the output shaft.
- Apply grease to the lip of the oil seal [C].
- Install the collar [D].

Transmission Shaft Removal

- Remove the transmission assy (see Transmission Assy Removal).
- Remove:
 - Shift Rods [A]
 - Shift Forks [B]
 - Drive Shaft [C] and Output Shaft [D]

Transmission Shaft Installation

- Be sure that the spacer [A] is on the output shaft [B].
9-36 CRANKSHAFT/TRANSMISSION

Transmission

- Install the transmission assy on the crankcase (see Transmission Assy Installation).
- Press in the oil seal [A] onto collar [B] so that the surface of the oil seal is flush with the surface [C] of the crankcase.
 - Apply oil to the outer circumference [D] of the oil seal so that it will go into place smoothly.
 - Apply grease to the lip [E] of the oil seal.

Transmission Shaft Disassembly
- Remove the transmission shafts (see Transmission Shaft Removal).
- Remove the circlips, disassemble the transmission shafts.

Special Tool - Outside Circlip Pliers: 57001-144
- The 5th gear [A] on the output shaft has three steel balls assembled into it for the positive neutral finder mechanism. Remove the 5th gear.
 - Set the output shaft in a vertical position holding the 3rd gear [B].
 - Spin the 5th gear quickly [C] and pull it off upward.

Transmission Shaft Assembly
- Apply engine oil to the bushings, needle bearings and shafts.
- Install the gear bushings [A] on the shaft with their holes [B] aligned.

- Replace any circlips removed with new ones.
- Install the circlips [A] so that the opening [B] is aligned with a spline groove [C].
Transmission

- The drive shaft gears can be recognized by size: the gear with the smallest diameter is 1st gear, and the largest one is 6th gear. Be sure that all parts are put back in the correct sequence and all circlips and washers are properly in place.
- Install the 3rd/4th gear onto the drive shaft with their oil holes aligned.
- Install the 6th gear bushing onto the drive shaft with their oil holes aligned.
- The output shaft gears can be recognized by size: the gear with the largest diameter is 1st gear, and the smallest one is 6th gear. Be sure that all parts are put back in the correct sequence and all circlips and washers are properly in place.
- Install the 5th and 6th gears onto the output shaft with their oil holes aligned.
- Install the 3rd/4th gear bushings onto the output shaft with their oil holes aligned.
- Fit the steel balls into the 5th gear holes in the output shaft, aligning three oil holes [D].

CAUTION
Do not apply grease to the balls to hold them in place. This will cause the positive neutral finder mechanism to malfunction.

After assembling the 5th gear with steel balls in place on the output shaft, check the ball-locking effect that the 5th gear doesn’t come out of the output shaft when moving it up and down by hand.
- Check that each gear spins or slides freely on the transmission shafts without binding after assembly.
9-38 CRANKSHAFT/TRANSMISSION

Transmission

1. 1st Gear
2. 2nd Gear
3. 3rd Gear
4. 4th Gear
5. 5th Gear
6. 6th (Top) Gear
7. Ball Bearing
8. Bushing
9. Toothed Washer, \(\phi 34 \text{ mm (1.34 in.)} \)
10. Circlip
11. Bushing
12. Thrust Washer, \(\phi 30 \text{ mm (1.18 in.)} \)
13. Needle Bearing
14. Circlip
15. Oil Seal
16. Collar
17. Washer
18. Nut
19. O-ring
20. Bearing
21. Spacer, \(\phi 39 \text{ mm (1.54 in.)} \)
22. Positioning Ring
23. Washer, \(\phi 40 \text{ mm (1.57 in.)} \)
24. Bushing
25. Toothed Washer, \(\phi 38 \text{ mm (1.50 in.)} \)
26. Shim, \(\phi 28 \text{ mm (1.10 in.)} \)
27. Steel Ball
28. Circlip, \(\phi 32.2 \text{ mm (1.268 in.)} \)
29. Thrust Washer, \(\phi 25 \text{ mm (0.98 in.)} \)
Transmission

Shift Drum and Fork Removal
- Remove the transmission assy (see Transmission Assy Removal).
- Remove the shift forks [A] and shift drum [B] (see Transmission Assy Disassembly).

Shift Drum and Fork Installation
- Refer to Transmission Assy Assembly and Installation.

Shift Drum Disassembly
- Refer to Transmission Assy Removal and Disassembly.

Shift Drum Assembly
- Refer to Transmission Assembly and Installation.

Shift Fork Bending
- Visually inspect the shift forks, and replace any fork that is bent. A bent fork could cause difficulty in shifting, or allow the transmission to jump out of gear when under power. 90° [A]

Shift Fork/Gear Groove Wear
- Measure the thickness of the shift fork ears [A], and measure the width [B] of the gear grooves.
 - If the thickness of a shift fork ear is less than the service limit, the shift fork must be replaced.

Shift Fork Ear Thickness
 - Standard: 5.9 – 6.0 mm (0.232 – 0.236 in.)
 - Service Limit: 5.8 mm (0.228 in.)
 - If the gear groove is worn over the service limit, the gear must be replaced.

Gear Groove Width
 - Standard: 6.05 – 6.15 mm (0.238 – 0.242 in.)
 - Service Limit: 6.25 mm (0.246 in.)
9-40 CRANKSHAFT/TRANSMISSION

Transmission

Shift Fork Guide Pin/Drum Groove Wear
- Measure the diameter of each shift fork guide pin [A], and measure the width [B] of each shift drum groove.
- If the guide pin on any shift fork is less than the service limit, the fork must be replaced.

Shift Fork Guide Pin Diameter
- Standard: 6.9 - 7.0 mm (0.272 - 0.276 in.)
- Service Limit: 6.8 mm (0.268 in.)
- If any shift drum groove is worn over the service limit, the drum must be replaced.

Shift Drum Groove Width
- Standard: 7.05 - 7.20 mm (0.278 - 0.283 in.)
- Service Limit: 7.3 mm (0.287 in.)

Gear Dog and Gear Dog Hole Damage
- Visually inspect the gear dogs [A] and gear dog holes [B].
- Replace any damaged gears or gears with excessively worn dogs or dog holes.
Ball Bearing, Needle Bearing, and Oil Seal

Ball and Needle Bearing Replacement

CAUTION

Do not remove the ball or needle bearings unless it is necessary. Removal may damage them.

- Using a press or puller, remove the ball bearing and/or needle bearings.

NOTE

○ In the absence of the above mentioned tools, satisfactory results may be obtained by heating the case to approximately 93°C (200°F) max., and tapping the bearing in or out.

CAUTION

Do not heat the case with a torch. This will warp the case. Soak the case in oil and heat the oil.

- Using a press and the bearing driver set [A], install the new ball bearing until it stops at the bottom of its housing.
- The new needle bearings must be pressed into the crankcase so that the end is flush with the end of the hole.

Special Tool - Bearing Driver Set: 57001-1129

Ball and Needle Bearing Wear

CAUTION

Do not remove the bearings for inspection. Removal may damage them.

- Check the ball bearings.
 ○ Since the ball bearings are made to extremely close tolerances, the wear must be judged by feel rather than measurement. Clean each bearing in a high-flash point solvent, dry it (do not spin the bearing while it is dry), and oil it with engine oil.
 ○ Spin [A] the bearing by hand to check its condition.
 ★ If the bearing is noisy, does not spin smoothly, or has any rough spots, replace it.
- Check the needle bearings.
 ○ The rollers in a needle bearing normally wear very little, and wear is difficult to measure. Instead of measuring, inspect the bearing for abrasion, color change, or other damage.
 ★ If there is any doubt as to the condition of a needle bearing, replace it.

Oil Seal Inspection

- Inspect the oil seals.
 ★ Replace it if the lips are misshapen, discolored (indicating that the rubber has deteriorated), hardened or otherwise damaged.
Wheels/Tires

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploded View</td>
<td>10-2</td>
</tr>
<tr>
<td>Specifications</td>
<td>10-4</td>
</tr>
<tr>
<td>Special Tools</td>
<td>10-5</td>
</tr>
<tr>
<td>Wheels (Rims)</td>
<td>10-6</td>
</tr>
<tr>
<td>Front Wheel Removal</td>
<td>10-6</td>
</tr>
<tr>
<td>Front Wheel Installation</td>
<td>10-6</td>
</tr>
<tr>
<td>Rear Wheel Removal</td>
<td>10-8</td>
</tr>
<tr>
<td>Rear Wheel Installation</td>
<td>10-8</td>
</tr>
<tr>
<td>Wheel Inspection</td>
<td>10-10</td>
</tr>
<tr>
<td>Axle Inspection</td>
<td>10-10</td>
</tr>
<tr>
<td>Balance Inspection</td>
<td>10-11</td>
</tr>
<tr>
<td>Balance Weight Removal</td>
<td>10-11</td>
</tr>
<tr>
<td>Balance Weight Installation</td>
<td>10-11</td>
</tr>
<tr>
<td>Tires</td>
<td>10-13</td>
</tr>
<tr>
<td>Air Pressure Inspection/Adjustment</td>
<td>10-13</td>
</tr>
<tr>
<td>Tire Inspection</td>
<td>10-13</td>
</tr>
<tr>
<td>Tire Removal</td>
<td>10-13</td>
</tr>
<tr>
<td>Tire Installation</td>
<td>10-13</td>
</tr>
<tr>
<td>Tire Repair</td>
<td>10-15</td>
</tr>
<tr>
<td>Hub Bearing</td>
<td>10-16</td>
</tr>
<tr>
<td>Hub Bearing Removal</td>
<td>10-16</td>
</tr>
<tr>
<td>Hub Bearing Installation</td>
<td>10-16</td>
</tr>
<tr>
<td>Hub Bearing Inspection</td>
<td>10-16</td>
</tr>
<tr>
<td>Hub Bearing Lubrication</td>
<td>10-17</td>
</tr>
</tbody>
</table>

http://mototh.com
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>1</td>
<td>Front Axle</td>
<td>108</td>
<td>11.0</td>
</tr>
<tr>
<td>2</td>
<td>Front Axle Clamp Bolt</td>
<td>34</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>Rear Axle Nut</td>
<td>108</td>
<td>11.0</td>
</tr>
</tbody>
</table>
10-4 WHEELS/TIRES

Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheels (Rims)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rim Runout:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axial</td>
<td>TIR 0.5 mm (0.02 in.) or less</td>
<td>TIR 1.0 mm (0.04 in.)</td>
</tr>
<tr>
<td>Radial</td>
<td>TIR 0.8 mm (0.03 in.) or less</td>
<td>TIR 1.0 mm (0.04 in.)</td>
</tr>
<tr>
<td>Axle Runout/100 mm (3.94 in.)</td>
<td>TIR 0.03 mm (0.0012 in.) or less</td>
<td>TIR 0.2 mm (0.008 in.)</td>
</tr>
<tr>
<td>Wheel Balance</td>
<td>10 g (0.35 oz.) or less</td>
<td>– – –</td>
</tr>
<tr>
<td>Balance Weights</td>
<td>10 g (0.35 oz.), 20 g (0.71 oz.), 30 g (1.06 oz.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Rim Size:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front</td>
<td>17 × 3.50</td>
<td>– – –</td>
</tr>
<tr>
<td>Rear</td>
<td>17 × 4.50</td>
<td>– – –</td>
</tr>
<tr>
<td>Tires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Pressure (when Cold):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front</td>
<td>Up to 180 kg (397 lb) load: 225 kPa (2.25 kgf/cm², 32 psi)</td>
<td>– – –</td>
</tr>
<tr>
<td>Rear</td>
<td>Up to 180 kg (397 lb) load: 250 kPa (2.50 kgf/cm², 36 psi)</td>
<td>– – –</td>
</tr>
<tr>
<td>Tread Depth:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front</td>
<td>6.5 mm (0.26 in.)</td>
<td>1 mm (0.04 in.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(AT, CH, DE) 1.6 mm (0.06 in.)</td>
</tr>
<tr>
<td>Rear</td>
<td>9.0 mm (0.35 in.)</td>
<td>Up to 130 km/h (80 mph): 2 mm (0.08 in.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over 130 km/h (80 mph): 3 mm (0.12 in.)</td>
</tr>
<tr>
<td>Standard Tires:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front</td>
<td>DUNLOP, SPORTMAX RADIAL D221FAJ</td>
<td>120/70 ZR17 M/C (58 W)</td>
</tr>
<tr>
<td>Rear</td>
<td>DUNLOP, SPORTMAX D221J</td>
<td>160/60 ZR17 M/C (69 W)</td>
</tr>
</tbody>
</table>

AT: Austria
CH: Switzerland
DE: Germany

⚠️ **WARNING**

Use the same manufacturer’s tires on both front and rear wheels.
Special Tools

Bearing Driver Set:
57001-1129

Bearing Remover Shaft, \(\phi 13 \):
57001-1377

Jack:
57001-1238

Jack Attachment:
57001-1608

Bearing Remover Head, \(\phi 20 \times \phi 22 \):
57001-1293

http://mototh.com
10-6 WHEELS/TIRES

Wheels (Rims)

Front Wheel Removal

• Remove:
 Brake Caliper Mounting Bolts [A]
 Front Brake Calipers [B]

• Loosen:
 Axle Clamp Bolt [A]
• Remove the front axle [B].

• Remove the lower fairing (see Lower Fairing Removal in the Frame chapter).
• Raise the front wheel off the ground with jack.
 Special Tools - Jack: 57001-1238
 Jack Attachment: 57001-1608
• Pull out the axle to the right and drop the front wheel out of the forks.

CAUTION
Do not lay the wheel on the ground with the discs facing down. This can damage or warp the disc. Place wooden blocks under the wheel so that the disc does not touch the ground.

Front Wheel Installation

NOTE
○ The direction of the wheel rotation [A] is shown by an arrow [B] on the wheel spoke.
• Check the wheel rotation mark on the front wheel and install it.
Wheels (Rims)

- Apply high-temperature grease to the grease seal lips.
- Fit the collars [A] on both sides of the hub.

- Insert the front axle, and tighten the axle.
 - Torque - Front Axle: 108 N·m (11.0 kgf·m, 80 ft·lb)
 - Before tightening the axle clamp bolt on the right front fork leg, pump the front fork up and down 4 or 5 times to allow the right front fork leg to seat on the front axle.

 NOTE
 - Put a block in front of the front wheel to stop moving.

- Tighten the axle clamp bolt [A].
 - Torque - Front Axle Clamp Bolt: 34 N·m (3.5 kgf·m, 25 ft·lb)

- Install the lower fairing (see Lower Fairing Installation in the Frame chapter).
- Install the front brake calipers (see Caliper Installation in the Brakes chapter).
- Check the front brake effectiveness (see Brake Operation Inspection in the Periodic Maintenance chapter).

WARNING

Do not attempt to drive the motorcycle until a full brake lever is obtained by pumping the brake lever until the pads are against the disc. The brake will not function on the first application of the lever if this is not done.
10-8 WHEELS/TIRES

Wheels (Rims)

Rear Wheel Removal

- Raise the rear wheel off the ground with stand [A].

- Remove:
 Brake Caliper Mounting Bolts [A]
 Rear Brake Caliper [B]

- Remove:
 Cotter Pin [A]
 Axle Nut [B]
 Washer [C]
 Axle [D] with Washer

- Remove the drive chain [A] from the rear sprocket toward the left.
- Move the rear wheel back and remove it.

CAUTION

Do not lay the wheel on the ground with the disc facing down. This can damage or warp the disc. Place wooden blocks under the wheel so that the disc does not touch the ground.

Rear Wheel Installation

- Apply high-temperature grease to the grease seal lips.
- Fit the collars [A] on the both sides of the hub.
Wheels (Rims)

- Engage the drive chain with the rear sprocket.
- Install the caliper bracket [A] onto the swingarm stop [B].
- Insert the axle from the right side of the wheel, and tighten the axle nut.

Torque - Rear Axle Nut: 108 N·m (11.0 kgf·m, 80 ft·lb)

- Insert a new cotter pin [A].

NOTE

○ When inserting the cotter pin, if the slots in the nut do not align with the cotter pin hole in the axle, tighten the nut clockwise [B] up to next alignment.
○ It should be within 30°.
○ Loosen once and tighten again when the slot goes past the nearest hole.

- Bend the cotter pin [A] over the nut [B].

WARNING

If the rear axle nut is not securely tightened or the cotter pin is not installed, an unsafe riding condition may result.

- Adjust the drive chain slack after installation (see Drive Chain Slack Inspection in the Periodic Maintenance chapter).
- Install the rear brake caliper (see Caliper Installation in the Brakes chapter).
- Check the rear brake effectiveness (see Brake Operation Inspection in the Periodic Maintenance chapter).

WARNING

Do not attempt to drive the motorcycle until a full brake pedal is obtained by pumping the brake pedal until the pads are against the disc. The brake will not function on the first application of the pedal if this is not done.
10-10 WHEELS/ TIRES

Wheels (Rims)

Wheel Inspection

- Raise the front/rear wheel off the ground with jack.

 Special Tools - Jack: 57001-1238
 Jack Attachment: 57001-1608

- Spin the wheel lightly, and check for roughness or binding.
 If roughness or binding is found, replace the hub bearings.
- Inspect the wheel for small cracks, dents, bending, or warp.
 If there is any damage to the wheel, replace the wheel.
- Remove the wheel, and support it without the tire by the axle.
- Measure the rim runout, axial [A] and radial [B], with a dial gauge.
 If rim runout exceeds the service limit, check the hub bearings.
 If the problem is not due to the bearings, replace the wheel.

Rim Runout

 Standard:
 Axial TIR 0.5 mm (0.02 in.) or less
 Radial TIR 0.8 mm (0.03 in.) or less

 Service Limit:
 Axial TIR 1.0 mm (0.04 in.)
 Radial TIR 1.0 mm (0.04 in.)

WARNING

Never attempt to repair a damaged wheel. If there is any damage besides wheel bearings, the wheel must be replaced to insure safe operational conditions.

Axle Inspection

- Remove the front and rear axles (see Front/Rear Wheel Removal).
- Visually inspect the front and rear axle for damages.
 If the axle is damaged or bent, replace it.
- Place the axle in V blocks that are 100 mm (3.94 in.) [A] apart, and set a dial gauge [B] on the axle at a point halfway between the blocks. Turn [C] the axle to measure the runout. The difference between the highest and lowest dial readings is the amount of runout.
 If axle runout exceeds the service limit, replace the axle.

Axle Runout/100 mm (3.94 in.)

 Standard: TIR 0.03 mm (0.0012 in.) or less
 Service Limit: TIR 0.2 mm (0.008 in.)

http://mototh.com
Wheels (Rims)

Balance Inspection
- Remove the front and rear wheels (see Front/Rear Wheel Removal).
- Support the wheel so that it can be spun freely.
- Spin the wheel lightly, and mark [A] the wheel at the top when the wheel stops.
 ○ Repeat this procedure several times. If the wheel stops of its own accord in various positions, it is well balanced.
 ★ If the wheel always stops in one position, adjust the wheel balance (see Balance Adjustment).

Balance Adjustment
- If the wheel always stops in one position, provisionally attach a balance weight [A] on the rim at the marking using adhesive tape.
- Rotate the wheel 1/4 turn [B], and see whether or not the wheel stops in this position. If it does, the correct balance weight is being used.
 ★ If the wheel rotates and the weight goes up, replace the weight with the next heavier size. If the wheel rotates and the weight goes down, replace the weight with the next lighter size. Repeat these steps until the wheel remains at rest after being rotated 1/4 turn.
- Rotate the wheel another 1/4 turn and then another 1/4 turn to see if the wheel is correctly balanced.
- Repeat the entire procedure as many times as necessary to achieve correct wheel balance.
- Permanently install the balance weight.

Balance Weight Removal
- Insert a regular tip screwdrivers [A] [B] between the rib [C] and the weight [D] as shown.
- Pry the balance weight with two screwdrivers and remove the balance weight.
- Discard the used balance weight.

CAUTION
Do not tap the screwdrivers. The rim could be damaged.

Balance Weight Installation
- Check if the weight portion has any play on the blade [A] and clip [B].
 ★ If it does, discard it.

WARNING
If the balance weight has any play on the rib of the rim, the blade and/or clip have been stretched. Replace the loose balance weight. Do not reuse used balance weight. Unbalanced wheels can create an unsafe riding condition.
10-12 WHEELS/TIRES

Wheels (Rims)

Balance Weight

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>41075-0007</td>
<td>10 g (0.35 oz.)</td>
</tr>
<tr>
<td>41075-0008</td>
<td>20 g (0.71 oz.)</td>
</tr>
<tr>
<td>41075-0009</td>
<td>30 g (1.06 oz.)</td>
</tr>
</tbody>
</table>

NOTE

- Balance weights are available from Kawasaki dealers in 10, 20, and 30 grams (0.35, 0.71, and 1.06 oz.) sizes. An imbalance of less than 10 grams (0.35 oz.) will not usually affect running stability.
- Do not use four or more balance weight (more than 90 gram, 3.17 oz.). If the wheel requires an excess balance weight, disassemble the wheel to find the cause.

- Slip the balance weight [A] onto the rib [B] by pushing or lightly hammering [C] the clip [D].
 - Left Side [E]
 - Right Side [F]

- Be sure to install the balance weight.
 - Check that the blade [A] and clip [B] are fully seated on the rim [C] and that the clip is hooked over the rib [D].
 - Left Side [E]
 - Right Side [F]

http://mototh.com
Tires

Air Pressure Inspection/Adjustment
- Refer to the Air Pressure Inspection in the Periodic Maintenance chapter.

Tire Inspection
- Refer to the Wheel/Tire Damage Inspection in the Periodic Maintenance chapter.

Tire Removal
- Remove:
 Wheel (see Front/Rear Wheel Removal)
 Valve Core (Let out the air)
- To maintain wheel balance, mark the valve stem position on the tire with chalk so that the tire can be reinstalled in the same position.
 Chalk Mark or Yellow Mark [A]
 Air Valve [B]
 Align [C]

- Lubricate the tire beads and rim flanges on both sides with a soap and water solution or rubber lubricant. This helps the tire beads slip off the rim flanges.

 CAUTION

 Never lubricate with engine oil or petroleum distillates because they will deteriorate the tire.

- Remove the tire from the rim using a suitable commercially available tire changer.

 NOTE

 ○ The tires cannot be removed with hand tools because they fit the rims too tightly.

Tire Installation

 WARNING

 Use the same manufacturer’s tires on both front and rear wheels.

- Inspect the rim and tire, and replace them if necessary.
- Clean the sealing surfaces of the rim and tire, and smooth the sealing surfaces of the rim with a fine emery cloth if necessary.
- Remove the air valve and discard it.

 CAUTION

 Replace the air valve whenever the tire is replaced. Do not reuse the air valve.
10-14 WHEELS/TIRES

Tires

- Install a new valve in the rim.
- Remove the valve cap, lubricate the stem seal [A] with a soap and water solution or rubber lubricant, and pull [B] the valve stem through the rim from the inside out until it snaps into place.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not use engine oil or petroleum distillates to lubricate the stem because they will deteriorate the rubber.</td>
</tr>
</tbody>
</table>

- The air valve is shown in the figure.
 - Valve Cap [A]
 - Valve Core [B]
 - Stem Seal [C]
 - Valve Stem [D]
 - Valve Seat [E]
 - Valve Opened [F]

- Check the tire rotation mark on the front and rear tires and install them on the rim accordingly.
 - Tire Rotation Mark [A]
 - Rotating Direction [B]

- Position the tire on the rim so that the valve [A] align with the tire balance mark [B] (the chalk mark made during removal, or the yellow paint mark on a new tire).
- Install the tire bead over the rim flange using a suitable commercially available tire changer.
- Lubricate the tire beads and rim flanges with a soap and water solution or rubber lubricant to help seat the tire beads in the sealing surfaces of the rim while inflating the tire.
- Center the rim in the tire beads, and inflate the tire with compressed air until the tire beads seat in the sealing surfaces.

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be sure to install the valve core whenever inflating the tire, and do not inflate the tire to more than 400 kPa (4.0 kgf/cm², 57 psi). Overinflation can explode the tire with possibility of injury and loss of life.</td>
</tr>
</tbody>
</table>
WHEELS/TIRES 10-15

Tires

- Check to see that the rim lines [A] on both sides of the tire sidewalls are parallel with the rim flanges.
- If the rim flanges and tire sidewall rim lines are not parallel, remove the valve core.
- Lubricate the rim flanges and tire beads.
- Install the valve core and inflate the tire again.
- After the tire beads seat in the rim flanges, check for air leakage.
 ○ Inflate the tire slightly above standard inflation.
 ○ Use a soap and water solution or submerge the tire, and check for bubbles that would indicate leakage.
- Adjust the air pressure to the specified pressure (see Air Pressure Inspection in the Periodic Maintenance chapter).
- Install the air valve cap.
- Adjust the wheel balance (see Balance Adjustment).

Tire Repair

Currently two types of repair for tubeless tires have come into wide use. One type is called a temporary (external) repair which can be carried out without removing the tire from the rim, and the other type is called permanent (internal) repair which requires tire removal. It is generally understood that higher running durability is obtained by permanent (internal) repairs than by temporary (external) ones. Also, permanent (internal) repairs have the advantage of permitting a thorough examination for secondary damage not visible from external inspection of the tire. For these reasons, Kawasaki does not recommend temporary (external) repair. Only appropriate permanent (internal) repairs are recommended. Repair methods may vary slightly from make to make. Follow the repair methods indicated by the manufacturer of the repair tools and materials so that safe results can be obtained.
10-16 WHEELS/TIRES

Hub Bearing

Hub Bearing Removal
- Remove the wheel (see Front/Rear Wheel Removal), and take out the following.
 Collars
 Coupling (Out of rear hub)
 Grease Seals
- Use the bearing remover to remove the hub bearings [A].

CAUTION

Do not lay the wheel on the ground with the disc facing down. This can damage or warp the disc. Place wooden blocks under the wheel so that the disc does not touch the ground.

Special Tools - Bearing Remover Head, \(\varphi 20 \times \varphi 22 \) [B]: 57001-1293
Bearing Remover Shaft, \(\varphi 13 \) [C]: 57001-1377

Hub Bearing Installation
- Before installing the hub bearings, blow any dirt or foreign particles out of the hub with compressed air to prevent contamination of the bearings.
- Replace the bearings with new ones.

NOTE

○ Install the bearings so that the marked side faces out.
- Install the bearings by using the bearing driver set which does not contact the bearing inner race.
- Press in each bearing [A] right until they are bottomed.
 Special Tool - Bearing Driver Set [B]: 57001-1129
- Replace the grease seals with new ones.
- Press in the grease seals [A] so that the seal surface is flush [B] with the end of the hole.
○ Apply high-temperature grease to the grease seal lips.
 Special Tool - Bearing Driver Set [C]: 57001-1129

Hub Bearing Inspection
Since the hub bearings are made to extremely close tolerances, the clearance can not normally be measured.

NOTE

○ Do not remove any bearings for inspection. If any bearings are removed, they will need to be replaced with new ones.
- Turn each bearing in the hub back and forth [A] while checking for plays, roughness or binding.
 ■ If bearing play, roughness or binding is found, replace the bearing.
- Examine the bearing seal [B] for tears or leakage.
 ■ If the seal is torn or is leaking, replace the bearing.
Hub Bearing

Hub Bearing Lubrication

NOTE

Since the hub bearings are packed with grease and sealed, lubrication is not required.
Final Drive

Table of Contents

- Exploded View .. 11-2
- Specifications ... 11-4
- Special Tools .. 11-5
- Drive Chain ... 11-6
 - Drive Chain Slack Inspection .. 11-6
 - Drive Chain Slack Adjustment .. 11-6
 - Wheel Alignment Inspection/Adjustment ... 11-6
 - Drive Chain Wear Inspection ... 11-6
 - Drive Chain Lubrication ... 11-6
 - Drive Chain Removal .. 11-6
 - Drive Chain Installation .. 11-7
- Sprocket, Coupling ... 11-10
 - Engine Sprocket Removal ... 11-10
 - Engine Sprocket Installation .. 11-11
 - Rear Sprocket Removal .. 11-11
 - Rear Sprocket Installation ... 11-11
 - Coupling Installation ... 11-12
 - Coupling Bearing Removal ... 11-12
 - Coupling Bearing Installation ... 11-12
 - Coupling Bearing Inspection ... 11-13
 - Coupling Bearing Lubrication .. 11-13
 - Coupling Damper Inspection .. 11-13
 - Sprocket Wear Inspection ... 11-13
 - Rear Sprocket Warp Inspection .. 11-14
11-2 FINAL DRIVE
Exploded View
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>1</td>
<td>Engine Sprocket Nut</td>
<td>125</td>
<td>12.7</td>
</tr>
<tr>
<td>2</td>
<td>Rear Axle Nut</td>
<td>108</td>
<td>11.0</td>
</tr>
<tr>
<td>3</td>
<td>Rear Sprocket Nuts</td>
<td>59</td>
<td>6.0</td>
</tr>
<tr>
<td>4</td>
<td>Speed Sensor Bolt</td>
<td>7.8</td>
<td>0.80</td>
</tr>
<tr>
<td>5</td>
<td>Speed Sensor Bracket Bolts</td>
<td>9.8</td>
<td>1.0</td>
</tr>
</tbody>
</table>

G: Apply grease.
HG: Apply high-temperature grease.
HO: Apply heavy oil.
L: Apply a non-permanent locking agent.
MO: Apply molybdenum disulfide oil solution.
 (mixture of the engine oil and molybdenum disulfide grease in a weight ratio 10 : 1)
R: Replacement Parts
<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Chain Slack</td>
<td>30 ~ 40 mm (1.2 ~ 1.6 in.)</td>
<td>– – –</td>
</tr>
<tr>
<td>Drive Chain Wear (20-link Length)</td>
<td>317.5 ~ 318.2 mm (12.50 ~ 12.53 in.)</td>
<td>323 mm (12.7 in.)</td>
</tr>
<tr>
<td>Standard Chain: Make</td>
<td>ENUMA</td>
<td>– – –</td>
</tr>
<tr>
<td>Type</td>
<td>EK520MVXL1</td>
<td>– – –</td>
</tr>
<tr>
<td>Link</td>
<td>114 links</td>
<td>– – –</td>
</tr>
<tr>
<td>Sprockets Rear Sprocket Warp</td>
<td>0.4 mm (0.016 in.) or less</td>
<td>0.5 mm (0.020 in.)</td>
</tr>
</tbody>
</table>
Special Tools

Inside Circlip Pliers: 57001-143

Bearing Driver Set: 57001-1129
11-6 FINAL DRIVE
Drive Chain

Drive Chain Slack Inspection
- Refer to the Drive Chain Slack Inspection in the Periodic Maintenance chapter.

Drive Chain Slack Adjustment
- Refer to the Drive Chain Slack Adjustment in the Periodic Maintenance chapter.

Wheel Alignment Inspection/Adjustment
- Refer to the Wheel Alignment Inspection in the Periodic Maintenance chapter.

Drive Chain Wear Inspection
- Refer to the Drive Chain Wear Inspection in the Periodic Maintenance chapter.

Drive Chain Lubrication
- Refer to the Drive Chain Lubrication Condition Inspection in the Periodic Maintenance chapter.

Drive Chain Removal

NOTE
○ Since the drive chain is installed through the swingarm, the chain cannot be removed other than by cutting it. Prepare the new link pin, link plate, grease seals, and tools for rejoining the chain.

- Using a suitable tool, cut the drive chain by removing the link pins.

 Recommended Tool: EK Joint Tool #50

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read the Tool Manual before removing.</td>
</tr>
<tr>
<td>Body [A]</td>
</tr>
<tr>
<td>Handlebar [B]</td>
</tr>
<tr>
<td>Cutting and Riveting Pin [C]</td>
</tr>
<tr>
<td>For Cutting [D]</td>
</tr>
<tr>
<td>For Riveting [E]</td>
</tr>
<tr>
<td>Plate Holder (a) [F]</td>
</tr>
<tr>
<td>Plate Holder (b) [G]</td>
</tr>
<tr>
<td>Gauge [H]</td>
</tr>
</tbody>
</table>

- Grind [A] the pin head to make it flat.
- Set the cutting and riveting pin [B] as shown.
Drive Chain

- Screw the pin holder until it touches chain pin.
- Be sure that the cutting pin hits center of chain pin.
- Screw the handlebar [A] into body.
- Turn the pin holder with wrench [B] clockwise to extract chain pin.

Drive Chain Installation

- Engage the new drive chain to the old drive chain and pull the end of the old drive chain until they are changing the position.
- Remove the old drive chain from the new drive chain.
- Apply grease to the link pins [A] and grease seals [B] [C].
- Engage the drive chain on the rear sprocket through the swingarm.
- Insert the link pins in the drive chain ends.
- Install the grease seals [C].
- Install the link plate so that the mark [D] faces out.
- Push the link plate by hand or plier to fix it.
- In case of grease seal chain, be sure to set the grease seals correctly.
- Set the plate holder (a) [A] and plate holder (b) [B] on the body.
11-8 FINAL DRIVE

Drive Chain

- Fit the plate holder (a) to link plate.
- Turn the pin holder by hand until plate holder (b) touches the other link plate.

- Turn the pin holder by wrench clockwise until two pins of link come into groove of plate holder (a).
- Take off the plate holder (a).

- Set the plate holder (b) [A] and cutting and riveting pin [B] as shown.

- Turn the pin holder until riveting pin touches link pin.

- Turn the wrench clockwise until tip of riveting pin hits of link pin.
- Rivet it.
- Same work for the other link pin.
Drive Chain

- After staking, check the staked area of the link pin for cracks.
- Measure the outside diameter [A] of the link pin and link plates width [B].

 Link Pin Outside Diameter
 Standard: 5.7 – 6.0 mm (0.22 – 0.24 in.)

 Link Plates Outside Width
 Standard: 17.25 – 17.45 mm (0.679 – 0.687 in.)

- If the reading exceeds the specified length, cut and rejoin the chain again.
- Check:
 - Movement of the Rollers
 - Adjust the drive chain slack after installing the chain (see Drive Chain Slack Adjustment in the Periodic Maintenance chapter).
11-10 FINAL DRIVE
Sprocket, Coupling

Engine Sprocket Removal

- Remove:
 - Engine Sprocket Cover Bolts [A]
 - Engine Sprocket Cover [B]

- Remove:
 - Speed Sensor Bracket Bolts [A]
 - Speed Sensor Bracket [B]

- Flatten out the bended washer [A].
- Remove the engine sprocket nut [B] and washer.

NOTE

○ *When loosening the engine sprocket nut, hold the rear brake on.*

- Raise the rear wheel off the ground with stand.
- Remove the axle cotter pin, and loosen the rear axle nut.
- Loosen the drive chain (see Drive Chain Slack Adjustment in the Periodic Maintenance chapter).
- Remove the drive chain from the rear sprocket toward the right.
- Pull the engine sprocket [A] with drive chain [B] off the output shaft [C].
- Disengage the drive chain from the engine sprocket.
Sprocket, Coupling

Engine Sprocket Installation
- Replace the sprocket washer and axle cotter pin.
- Install the engine sprocket [A] so that “OUTSIDE” letters face outward.
- Apply molybdenum disulfide oil solution to the threads of the output shaft and seating surface of the engine sprocket nut.
- After torquing the engine sprocket nut, bend the one side of the washer [B] over the nut.

NOTE
- **Tighten the engine sprocket nut while applying the rear brake.**

- **Tighten:**
 - Torque - Engine Sprocket Nut: 125 N·m (12.7 kgf·m, 92 ft·lb)
 - Speed Sensor Bracket Bolts: 9.8 N·m (1.0 kgf·m, 87 in·lb)

- Install the engine sprocket cover, and tighten the bolts.
- Adjust the drive chain slack after installing the sprocket (see Drive Chain Slack Adjustment in the Periodic Maintenance chapter).
- Bend the end of axle cotter pin surely after tightening the axle nut (see Rear Wheel Installation in the Wheels/Tires chapter).

Rear Sprocket Removal
- Remove the rear wheel (see Rear Wheel Removal in the Wheels/Tires chapter).

CAUTION
- Do not lay the wheel on the ground with the disc facing down. This can damage or warp the disc. Place wooden blocks under the wheel so that the disc does not touch the ground.

- Remove the rear sprocket nuts [A].
- Remove the rear sprocket [B].

Rear Sprocket Installation
- Install the sprocket facing the tooth number marking [A] outward.
- Tighten the rear sprocket nuts.

- **Torque - Rear Sprocket Nuts: 59 N·m (6.0 kgf·m, 44 ft·lb)**
- Install the rear wheel (see Rear Wheel Installation in the Wheels/Tires chapter).
11-12 FINAL DRIVE

Sprocket, Coupling

Coupling Installation
- Apply high-temperature grease to the coupling grease seal lips [A].
- Apply grease to the coupling internal surface [B].

- Grease the following.
 - Wheel Flange Portion [A]
 - O-ring [B]
- Install the collar [C].

Coupling Bearing Removal
- Remove:
 - Coupling
 - Grease Seal
 - Circlip [A]

Special Tool - Inside Circlip Pliers: 57001-143

- Remove the bearing [A] by tapping from the wheel side.

Special Tool - Bearing Driver Set [B]: 57001-1129

Coupling Bearing Installation
- Replace the bearing with a new one.
- Press in the bearing [A] until it is bottomed.

Special Tool - Bearing Driver Set [B]: 57001-1129
- Replace the circlip with a new one.

Special Tool - Inside Circlip Pliers: 57001-143
Sprocket, Coupling

- Replace the grease seal with a new one.
- Press in the grease seal so that the seal surface is flush with the end of the hole.
- Apply high-temperature grease to the grease seal lips.

 Special Tool - Bearing Driver Set: 57001-1129

Coupling Bearing Inspection
Since the coupling bearing is made to extremely close tolerances, the clearance can not normally be measured.

NOTE
- It is not necessary to remove the coupling bearing for inspection. If the bearing is removed, it will need to be replaced with a new one.

- Turn the bearing in the coupling back and forth [A] while checking for plays, roughness or binding.
- If the bearing play, roughness or binding is found, replace the bearing.
- Examine the bearing seal [B] for tears or leakage.
- If the seal is torn or is leaking, replace the bearing.

Coupling Bearing Lubrication

NOTE
- Since the coupling bearing is packed with grease and sealed, lubrication is not required.

Coupling Damper Inspection
- Remove the rear wheel coupling, and inspect the rubber dampers [A].
- Replace the damper if it appears damaged or deteriorated.

Sprocket Wear Inspection
- Visually inspect the engine and rear sprocket teeth for wear and damage.

 - If the teeth are worn as illustrated, replace the sprocket, and inspect the drive chain wear (see Drive Chain Wear Inspection in the Periodic Maintenance chapter).

 Worn Tooth (Engine Sprocket) [A]
 Worn Tooth (Rear Sprocket) [B]
 Direction of Rotation [C]

NOTE
- If a sprocket requires replacement, the chain is probably worn also. When replacing a sprocket, inspect the chain.
11-14 FINAL DRIVE

Sprocket, Coupling

Rear Sprocket Warp Inspection

- Raise the rear wheel off the ground with stand so that it will turn freely.
- Set a dial gauge [A] against the rear sprocket [B] near the teeth as shown, and rotate [C] the rear wheel to measure the sprocket runout (warp). The difference between the highest and lowest dial gauge readings is the amount of runout (warp).
- If the runout exceeds the service limit, replace the rear sprocket.

Rear Sprocket Warp

Standard: 0.4 mm (0.016 in.) or less
Service Limit: 0.5 mm (0.020 in.)
BRAKES 12-1

Brakes

Table of Contents

Exploded View............................. 12-2
Specifications 12-6
Special Tools 12-7
Brake Lever, Brake Pedal............... 12-8
Brake Lever Position Adjustment. 12-8
Brake Pedal Position Inspection .. 12-8
Brake Pedal Position Adjustment. 12-8
Brake Pedal Removal 12-9
Brake Pedal Installation 12-9
Calipers .. 12-11
Front Caliper Removal 12-11
Rear Caliper Removal............... 12-11
Caliper Installation 12-11
Front Caliper Disassembly 12-12
Front Caliper Assembly 12-12
Rear Caliper Disassembly 12-12
Rear Caliper Assembly 12-12
Caliper Fluid Seal Damage.......... 12-12
Front Caliper Dust Boot and
Friction Boot Damage 12-12
Caliper Piston and Cylinder
Damage..................................... 12-13
Rear Caliper Holder Shaft Wear.. 12-13
Brake Pads 12-14
Front Brake Pad Removal 12-14
Front Brake Pad Installation 12-14
Rear Brake Pad Removal 12-14
Rear Brake Pad Installation 12-14
Master Cylinder 12-15
Front Master Cylinder Removal ... 12-15
Front Master Cylinder Installation 12-15
Rear Master Cylinder Removal 12-16
Rear Master Cylinder Installation 12-16
Front Master Cylinder 12-16
Rear Master Cylinder Disassembly 12-16
Master Cylinder Assembly 12-16
Master Cylinder Inspection 12-17
Brake Disc 12-18
Brake Disc Removal 12-18
Brake Disc Installation 12-18
Brake Disc Wear 12-18
Brake Disc Warp 12-18
Brake Fluid 12-19
Brake Fluid Level Inspection 12-19
Brake Fluid Change 12-19
Brake Line Bleeding 12-19
Brake Hose 12-22
Brake Hose Removal/Installation 12-22
Brake Hose Inspection 12-22

http://mototh.com
<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>1</td>
<td>Bleed Valve</td>
<td>7.8</td>
<td>0.80</td>
</tr>
<tr>
<td>2</td>
<td>Brake Hose Banjo Bolts</td>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>Brake Lever Pivot Bolt</td>
<td>1.0</td>
<td>0.10</td>
</tr>
<tr>
<td>4</td>
<td>Brake Lever Pivot Bolt Locknut</td>
<td>5.9</td>
<td>0.60</td>
</tr>
<tr>
<td>5</td>
<td>Front Brake Disc Mounting Bolts</td>
<td>27</td>
<td>2.8</td>
</tr>
<tr>
<td>6</td>
<td>Front Brake Light Switch Screw</td>
<td>1.0</td>
<td>0.10</td>
</tr>
<tr>
<td>7</td>
<td>Front Brake Reservoir Cap Screws</td>
<td>1.0</td>
<td>0.10</td>
</tr>
<tr>
<td>8</td>
<td>Front Caliper Mounting Bolts</td>
<td>34</td>
<td>3.5</td>
</tr>
<tr>
<td>9</td>
<td>Front Master Cylinder Clamp Bolts</td>
<td>8.8</td>
<td>0.90</td>
</tr>
</tbody>
</table>

B: Apply brake fluid.
L: Apply a non-permanent locking agent.
R: Replacement Parts
S: Follow the specified tightening sequence.
Si: Apply silicone grease (ex. PBC grease).
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque (N·m)</th>
<th>Torque (kgf·m)</th>
<th>Torque (ft·lb)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bleed Valve</td>
<td>7.8</td>
<td>0.80</td>
<td>69 in·lb</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Brake Hose Banjo Bolts</td>
<td>25</td>
<td>2.5</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Brake Pedal Bolt</td>
<td>8.8</td>
<td>0.90</td>
<td>78 in·lb</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rear Brake Disc Mounting Bolts</td>
<td>27</td>
<td>2.8</td>
<td>20</td>
<td>L</td>
</tr>
<tr>
<td>5</td>
<td>Rear Caliper Mounting Bolts</td>
<td>25</td>
<td>2.5</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Rear Master Cylinder Mounting Bolts</td>
<td>25</td>
<td>2.5</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Rear Master Cylinder Push Rod Locknut</td>
<td>18</td>
<td>1.8</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

B: Apply brake fluid.
G: Apply grease.
L: Apply a non-permanent locking agent.
R: Replacement Parts
Si: Apply silicone grease (ex. PBC grease).
12-6 BRAKES

Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
<th>Service Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake Lever, Brake Pedal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brake Lever Position</td>
<td>5-way adjustable (to suit rider)</td>
<td>– – –</td>
</tr>
<tr>
<td>Brake Lever Free Play</td>
<td>Non-adjustable</td>
<td>– – –</td>
</tr>
<tr>
<td>Pedal Free Play</td>
<td>Non-adjustable</td>
<td>– – –</td>
</tr>
<tr>
<td>Pedal Position</td>
<td>About 40 mm (1.6 in.) below top of footpeg</td>
<td>– – –</td>
</tr>
<tr>
<td>Brake Pads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lining Thickness:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front</td>
<td>4.5 mm (0.18 in.)</td>
<td>1 mm (0.04 in.)</td>
</tr>
<tr>
<td>Rear</td>
<td>5.0 mm (0.20 in.)</td>
<td>1 mm (0.04 in.)</td>
</tr>
<tr>
<td>Brake Disc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front</td>
<td>4.3 – 4.7 mm (0.17 ~ 0.19 in.)</td>
<td>4.0 mm (0.16 in.)</td>
</tr>
<tr>
<td>Rear</td>
<td>4.8 – 5.2 mm (0.19 ~ 0.20 in.)</td>
<td>4.5 mm (0.18 in.)</td>
</tr>
<tr>
<td>Runout</td>
<td>0.15 mm (0.006 in.) or less</td>
<td>0.3 mm (0.01 in.)</td>
</tr>
<tr>
<td>Brake Fluid</td>
<td>DOT4</td>
<td>– – –</td>
</tr>
</tbody>
</table>
Special Tools

<table>
<thead>
<tr>
<th>Inside Circlip Pliers:</th>
<th>Jack Attachment:</th>
</tr>
</thead>
<tbody>
<tr>
<td>57001-143</td>
<td>57001-1608</td>
</tr>
</tbody>
</table>

Jack:
57001-1238

![Inside Circlip Pliers](image1)

![Jack Attachment](image2)

![Jack](image3)
12-8 BRAKES

Brake Lever, Brake Pedal

Brake Lever Position Adjustment

The brake lever adjuster has 5 positions so that the brake lever position can be adjusted to suit the operator’s hand.

- Push the lever forward and turn the adjuster [A] to align the number with the arrow mark [B] on the lever holder.
- The distance from the grip to the lever is minimum at number 5 and maximum at number 1.

Brake Pedal Position Inspection

- Check that the brake pedal [A] is in the correct position.
- Pedal Position
 - Standard: About 40 mm (1.6 in.) [C] below top of footpeg
- If it is incorrect, adjust the brake pedal position.

Brake Pedal Position Adjustment

NOTE

- Usually it is not necessary to adjust the pedal position, but always adjust it when the push rod locknut has been loosened.

- Remove:
 - Frame Cover (see Frame Cover Removal in the Frame chapter)
 - Bolts [A]
 - Right Footpeg Stay [B]

- Loosen the locknut [A] and turn the push rod with the hex head [B] to achieve the correct pedal position.
- If the length [C] shown is 70 ±1 mm (2.76 ±0.04 in.), the pedal position will be within the standard range.

- Tighten:
 - Torque - Rear Master Cylinder Push Rod Locknut: 18 N-m (1.8 kgf-m, 13 ft-lb)
 - Install the footpeg stay, and tighten the bolts.
 - Torque - Footpeg Stay Bolts: 34 N-m (3.5 kgf-m, 25 ft-lb)
 - Check the brake light switch operation (see Brake Light Switch Operation Inspection in the Periodic Maintenance chapter).
Brake Lever, Brake Pedal

Brake Pedal Removal

- Remove:
 - Frame Cover (see Frame Cover Removal in the Frame chapter)
 - Bolts [A]
 - Right Footpeg Stay [B]

- Remove:
 - Cotter Pin [A]
 - Joint Pin [B]
 - Rear Brake Light Switch Spring [C]
 - Return Spring [D]
- Remove the mounting bolt [E] and take out the brake pedal.

Brake Pedal Installation

- Apply grease to the pivot shaft [A] and install the washer [B].
- Install:
 - Brake Pedal [C]
 - Washer [D]
 - Brake Pedal Bolt [E]
- Torque - Brake Pedal Bolt: 8.8 N·m (0.90 kgf·m, 78 in·lb)

- Hook the lower end of the rear brake light switch spring [A] on the pedal hook.
- Hook the upper end of the return spring [B] on the pedal hook.

- Replace the cotter pin with a new one.
- Insert the cotter pin [A] and bend the pin ends [B].
12-10 BRAKES

Brake Lever, Brake Pedal

- Install the right footpeg stay, and tighten the bolts.
 Torque - Footpeg Stay Bolts: 34 N·m (3.5 kgf·m, 25 ft·lb)
- Depress the brake pedal [A] and then align the bolts holes of the master cylinder [B].
 Torque - Rear Master Cylinder Mounting Bolts: 25 N·m (2.5 kgf·m, 18 ft·lb)
- Check the brake pedal position (see Brake Pedal Position Inspection).
Calipers

Front Caliper Removal
- Loosen the banjo bolt [A] at the brake hose lower end, and tighten it loosely.
- Unscrew the caliper mounting bolts [B], and detach the caliper [C] from the disc.
- Unscrew the banjo bolt and remove the brake hoses [D] from the caliper (see Brake Hose Removal/Installation).

CAUTION
Immediately wash away any brake fluid that spills.

NOTE
○ If the caliper is to be disassembled after removal and if compressed air is not available, disassemble the caliper before the brake hose is removed (see Front Caliper Disassembly).

Rear Caliper Removal
- Loosen the banjo bolt [A] at the brake hose lower end, and tighten it loosely.
- Unscrew the caliper mounting bolts [B], and detach the caliper [C] from the disc.
- Unscrew the banjo bolt and remove the brake hose [D] from the caliper (see Brake Hose Removal/Installation).

CAUTION
Immediately wash away any brake fluid that spills.

NOTE
○ If the caliper is to be disassembled after removal and if compressed air is not available, disassemble the caliper before the brake hose is removed (see Rear Caliper Disassembly).

Caliper Installation
- Install the caliper and brake hose lower end.
○ Replace the washers on each side of hose fitting with new ones.
- Tighten:
 Torque - Caliper Mounting Bolts
 Front: 34 N·m (3.5 kgf·m, 25 ft·lb)
 Rear: 25 N·m (2.5 kgf·m, 18 ft·lb)
 Brake Hose Banjo Bolts: 25 N·m (2.5 kgf·m, 18 ft·lb)
- Check the fluid level in the brake reservoirs.
- Bleed the brake line (see Brake Line Bleeding).
- Check the brake for good braking power, no brake drag, and no fluid leakage.

WARNING
Do not attempt to drive the motorcycle until a full brake lever or pedal is obtained by pumping the brake lever or pedal until the pads are against the disc. The brakes will not function on the first application of the lever or pedal if this is not done.
12-12 BRAKES

Calipers

Front Caliper Disassembly
- Refer to the Caliper Rubber Parts Replacement in the Periodic Maintenance chapter.

Front Caliper Assembly
- Refer to the Caliper Rubber Parts Replacement in the Periodic Maintenance chapter.

Rear Caliper Disassembly
- Refer to the Caliper Rubber Parts Replacement in the Periodic Maintenance chapter.

Rear Caliper Assembly
- Refer to the Caliper Rubber Parts Replacement in the Periodic Maintenance chapter.

Caliper Fluid Seal Damage

The fluid seal (piston seal) [A] is placed around the piston to maintain clearance between the pad and the disc. If the seal is in a poor condition, it could lead the pad to wear excessively or the brake to drag, which may cause the temperature of the discs or the brake fluid to increase.
- Replace the fluid seal if it exhibits any of the conditions listed below.
 ○ Brake fluid leakage around the pad.
 ○ Brakes overheat.
 ○ Considerable difference in inner and outer pad wear.
 ○ Seal and piston are stuck together.

★ If the fluid seal is replaced, replace the dust seal [B] as well. Also, replace all seals every other time the pads are changed.

Rear Caliper Dust Boot and Friction Boot Damage

- Check that the dust boot [A] and friction boot [B] are not cracked, worn, swollen, or otherwise damaged.
★ If they show any damage, replace it.
Calipers

Caliper Piston and Cylinder Damage
• Visually inspect the pistons [A] and cylinder surfaces [B].
★ Replace the caliper if the cylinder and piston are badly scores or rusty.

Rear Caliper Holder Shaft Wear
The caliper body must slide smoothly on the caliper holder shafts [A]. If the body does not slide smoothly, one pad will wear more than the other, pad wear will increase, and constant drag on the disc will raise brake and brake fluid temperature.
• Check to see that the caliper holder shafts are not badly worn or stepped, and that the rubber friction boots are not damaged.
★ If the rubber friction boot is damaged, replace the rubber friction boot. To replace the friction boot, remove the pads and the caliper bracket.
★ If the caliper holder shaft is damaged, replace the caliper bracket.
Brake Pads

Front Brake Pad Removal
- Remove the front caliper with the hose installed (see Front Caliper Removal).
- Draw out the holder shaft pin [A], and take off the holder shaft [B].
- Remove the pad [C] on the piston side.
- Push the holder [D] towards the piston, and remove the pad of the other side [E] from the holder shaft [F].

Front Brake Pad Installation
- Push the caliper pistons in by hand as far as they will go.
- Install the anti-rattle spring in its correct position.
- Install the pad on the piston side first, then install the other pad on the holder.
- Install the front caliper (see Caliper Installation).

WARNING
Do not attempt to drive the motorcycle until a full brake lever is obtained by pumping the brake lever until the pads are against the disc. The brake will not function on the first application of the lever if this is not done.

Rear Brake Pad Removal
- Remove the rear caliper with the hose installed (see Rear Caliper Removal).
- Draw out the holder shaft pin [A], and take off the holder shaft [B].
- Remove the pad [C] on the piston side.
- Push the holder [D] towards the piston, and remove the pad of the other side [E] from the holder shaft [F].

Rear Brake Pad Installation
- Push the caliper piston in by hand as far as it will go.
- Install the anti-rattle spring in its correct position.
- Install the pad on the piston side first, then install the other pad on the holder.
- Install the rear caliper (see Caliper Installation).

WARNING
Do not attempt to drive the motorcycle until a full brake pedal is obtained by pumping the brake pedal until the pads are against the disc. The brake will not function on the first application of the pedal if this is not done.

Brake Pad Wear Inspection
- Refer to the Brake Pad Wear Inspection in the Periodic Maintenance chapter.
Master Cylinder

Front Master Cylinder Removal
- Remove the banjo bolt [A] to disconnect the brake hose from the master cylinder [B] (see Brake Hose Removal/Installation).

- Disconnect the front brake light switch connectors [A].
- Unscrew the clamp bolts [B], and take off the master cylinder as an assembly with the reservoir, brake lever and brake switch installed.

CAUTION
Immediately wash away any brake fluid that spills.

- Remove:
 Brake Lever Pivot Bolt [A] and Locknut
 Brake Lever [B]
 Front Brake Light Switch [C]

Front Master Cylinder Installation
- Install the front master cylinder so that the punch mark [A] of the handlebar is aligned with the mating surface [B] of the master cylinder clamp to level the reservoir.

- The master cylinder clamp must be installed with the arrow mark [A] upward.
- Tighten the upper clamp bolt [B] first, and then the lower clamp bolt [C]. There will be a gap at the lower part of the clamp after tightening.

 Torque - Front Master Cylinder Clamp Bolts: 8.8 N·m (0.90 kgf·m, 78 in·lb)

- Replace the washers on each side of the hose fitting with new ones.
- Tighten the brake hose banjo bolt.

 Torque - Brake Hose Banjo Bolt: 25 N·m (2.5 kgf·m, 18 ft·lb)

- Bleed the brake line (see Brake Line Bleeding).
- Check the brake for good braking power, no brake drag, and no fluid leakage.
12-16 BRAKES

Master Cylinder

Rear Master Cylinder Removal
- Unscrew the brake hose banjo bolt [A] on the master cylinder (see Brake Hose Removal/Installation).

- Unscrew the master cylinder mounting bolts [A].
- Remove the cotter pin [B].

NOTE
- Pull off the joint pin while pressing down the brake pedal.

- Pull off the reservoir hose lower end [C], and drain the brake fluid into a container.
- Remove the master cylinder.

Rear Master Cylinder Installation
- Replace the cotter pin [A] with a new one.
- Replace the washers on each side of hose fitting with new ones.
- Tighten the following bolts.
 - Torque - Rear Master Cylinder Mounting Bolts: 25 N·m (2.5 kgf-m, 18 ft·lb)
 - Brake Hose Banjo Bolt: 25 N·m (2.5 kgf-m, 18 ft·lb)
- Bleed the brake line (see Brake Line Bleeding).
- Check the brake for good braking power, no brake drag, and no fluid leakage.

Front Master Cylinder Disassembly
- Refer to the Master Cylinder Rubber Parts Replacement in the Periodic Maintenance chapter.

Rear Master Cylinder Disassembly
- Refer to the Master Cylinder Rubber Parts Replacement in the Periodic Maintenance chapter.

Master Cylinder Assembly
- Refer to the Master Cylinder Rubber Parts Replacement in the Periodic Maintenance chapter.
Master Cylinder Inspection

- Remove the master cylinders (see Front/Rear Master Cylinder Removal).
- Disassemble the front and rear master cylinders.
- Check that there are no scratches, rust or pitting on the inner wall [A] of each master cylinder and on the outside of each piston [B].
 - If a master cylinder or piston shows any damage, replace them.
- Inspect the primary cup [C] and secondary cup [D].
 - If a cup is worn, damaged softened (rotted), or swollen, the piston assembly should be replaced to renew the cups.
 - If fluid leakage is noted at the brake lever, the piston assembly should be replaced to renew the cups.

Front Master Cylinder [J]

- Check the dust covers [E] for damage.
 - If they are damaged, replace them.
- Check the piston return springs [F] for any damage.
 - If the springs are damaged, replace them.
- Check that relief port [G] and supply port [H] are not plugged.
 - If the relief port becomes plugged, the brake pads will drag on the disc. Blow the ports clean with compressed air.

Rear Master Cylinder [K]
12-18 BRAKES

Brake Disc

Brake Disc Removal
- Remove the wheel (see Front/Rear Wheel Removal in the Wheels/Tires chapter).
- Unscrew the mounting bolts, and take off the disc.
- Remove the gaskets.

Brake Disc Installation
- Replace the gaskets with new ones.
- Install the brake disc on the wheel so that the marked side [A] faces out.
- Apply a non-permanent locking agent to the threads of the front and rear brake disc mounting bolts [B].
- Tighten:
 Torque - Brake Disc Mounting Bolts: 27 N-m (2.8 kgf-m, 20 ft·lb)

Brake Disc Wear
- Measure the thickness of each disc [A] at the point where it has worn the most.
 ★ If the disc has worn past the service limit, replace it.
 Measuring Area [B]

Brake Discs Thickness
- **Standard:**
 - Front 4.3 – 4.7 mm (0.17 – 0.19 in.)
 - Rear 4.8 – 5.2 mm (0.19 – 0.20 in.)
- **Service Limit:**
 - Front 4.0 mm (0.16 in.)
 - Rear 4.5 mm (0.18 in.)

Brake Disc Warp
- Raise the wheel off the ground with jack (see Front/Rear Wheel Removal in the Wheels/Tires chapter).
- **Special Tools - Jack:** 57001-1238
 - Jack Attachment: 57001-1608
 ○ For front disc inspection, turn the handlebar fully to one side.
- Set up a dial gauge against the disc [A] as shown and measure disc runout, while turning [B] the wheel by hand.
 ★ If runout exceeds the service limit, replace the disc.

Disc Runout
- **Standard:** 0.15 mm (0.006 in.) or less
- **Service Limit:** 0.3 mm (0.01 in.)
Brake Fluid

Brake Fluid Level Inspection
• Refer to the Brake Fluid Level Inspection in the Periodic Maintenance chapter.

Brake Fluid Change
• Refer to the Brake Fluid Change in the Periodic Maintenance chapter.

Brake Line Bleeding
The brake fluid has a very low compression coefficient so that almost all the movement of the brake lever or pedal is transmitted directly to the caliper for braking action. Air, however, is easily compressed. When air enters the brake lines, brake lever or pedal movement will be partially used in compressing the air. This will make the lever or pedal feel spongy, and there will be a loss in braking power.

WARNING
Be sure to bleed the air from the brake line whenever brake lever or pedal action feels soft or spongy after the brake fluid is changed, or whenever a brake line fitting has been loosened for any reason.

NOTE
○ The procedure to bleed the front brake line is as follows.
 Bleeding the rear brake line is the same as for the front brake.

• Remove the reservoir cap [A] and diaphragm.
• Fill the reservoir with fresh brake fluid to the upper level line in the reservoir.
• Slowly pump the brake lever several times until no air bubbles can be seen rising up through the fluid from the holes at the bottom of the reservoir.
 ○ Bleed the air completely from the master cylinder by this operation.

• Remove the rubber cap from the bleed valve [A] on the caliper.
• Attach a clear plastic hose [B] to the bleed valve, and run the other end of the hose into a container.
12-20 BRAKES

Brake Fluid

- Bleed the brake line and the caliper.
 ○ Repeat this operation until no more air can be seen coming out into the plastic hose.
 1. Pump the brake lever until it becomes hard, and apply the brake and hold it [A].
 2. Quickly open and close [B] the bleed valve while holding the brake applied.
 3. Release the brake [C].

NOTE
- The fluid level must be checked often during the bleeding operation and replenished with fresh brake fluid as necessary. If the fluid in the reservoir runs completely out any time during bleeding, the bleeding operation must be done over again from the beginning since air will have entered the line.
- Tap the brake hose lightly from the caliper to the reservoir for more complete bleeding.
- Front Brake: First bleeding the right caliper then repeat the above steps for the left caliper.

- Remove the clear plastic hose.
- Install the diaphragm and reservoir cap.
- Tighten:
 Torque - Front Brake Reservoir Cap Screws: 1.0 N·m (0.10 kgf·m, 9 in·lb)

- Follow the procedure below to install the rear brake fluid reservoir cap correctly.
 ○ First, tighten the rear brake fluid reservoir cap [B] clockwise [C] by hand until slight resistance is felt indicating that the cap is seated on the reservoir body, then tighten the cap an additional 1/6 turn [D] while holding the brake fluid reservoir body [A].

- Tighten the bleed valve, and install the rubber cap.
 Torque - Bleed Valve: 7.8 N·m (0.80 kgf·m, 69 in·lb)
- Check the fluid level (see Brake Fluid Level Inspection in the Periodic Maintenance chapter).
- After bleeding is done, check the brake for good braking power, no brake drag, and no fluid leakage.
Brake Fluid

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>When working with the disc brake, observe the precautions listed below.</td>
</tr>
<tr>
<td>1. Never reuse old brake fluid.</td>
</tr>
<tr>
<td>2. Do not use fluid from a container that has been left unsealed or that has been open for a long time.</td>
</tr>
<tr>
<td>3. Do not mix two types and brands of fluid for use in the brake. This lowers the brake fluid boiling point and could cause the brake to be ineffective. It may also cause the rubber brake parts to deteriorate.</td>
</tr>
<tr>
<td>4. Don't leave the reservoir cap off for any length of time to avoid moisture contamination of the fluid.</td>
</tr>
<tr>
<td>5. Don't change the fluid in the rain or when a strong wind is blowing.</td>
</tr>
<tr>
<td>6. Except for the disc pads and disc, use only disc brake fluid, isopropyl alcohol, or ethyl alcohol for cleaning of the brake parts. Do not use any other fluid for cleaning these parts. Gasoline, engine oil, or any other petroleum distillate will cause deterioration of the rubber parts. Oil spilled on any part will be difficult to wash off completely and will eventually deteriorate the rubber used in the disc brake.</td>
</tr>
<tr>
<td>7. When handling the disc pads or disc, be careful that no disc brake fluid or any oil gets on them. Clean off any fluid or oil that inadvertently gets on the pads or disc with a high-flash point solvent. Do not use one which will leave an oily residue. Replace the pads with new ones if they cannot be cleaned satisfactorily.</td>
</tr>
<tr>
<td>8. Brake fluid quickly ruins painted surfaces; any spilled fluid should be completely wiped up immediately.</td>
</tr>
<tr>
<td>9. If any of the brake line fittings or the bleed valve is opened at any time, the air must be bled from the brake line.</td>
</tr>
</tbody>
</table>

http://mototh.com
12-22 BRAKES

Brake Hose

Brake Hose Removal/Installation
• Refer to the Brake Hose and Pipe Replacement in the Periodic Maintenance chapter.

Brake Hose Inspection
• Refer to the Brake Hose Damage and Installation Condition Inspection in the Periodic Maintenance chapter.
Suspension

Table of Contents

- Exploded View ... 13-2
- Specifications .. 13-6
- Special Tools ... 13-7
- Front Fork .. 13-9
 - Front Fork Removal ... 13-9
 - Front Fork Installation ... 13-9
 - Front Fork Oil Change .. 13-9
 - Front Fork Disassembly .. 13-11
 - Front Fork Assembly ... 13-12
 - Inner Tube Inspection ... 13-13
 - Dust Seal Inspection .. 13-13
 - Fork Spring Inspection .. 13-14
- Rear Shock Absorber ... 13-15
 - Spring Preload Adjustment .. 13-15
 - Rear Shock Absorber Removal 13-15
 - Rear Shock Absorber Installation 13-16
 - Rear Shock Absorber Inspection 13-16
- Swingarm ... 13-17
 - Swingarm Removal .. 13-17
 - Swingarm Installation .. 13-17
 - Swingarm Bearing Removal ... 13-18
 - Swingarm Bearing Installation 13-18
 - Swingarm Bearing, Sleeve Inspection 13-19
 - Swingarm Bearing Lubrication .. 13-20
 - Chain Guide Inspection .. 13-20
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque (N·m)</th>
<th>Torque (kgf·m)</th>
<th>Torque (ft·lb)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Front Axle Clamp Bolt</td>
<td>34</td>
<td>3.5</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Front Fork Bottom Allen Bolts</td>
<td>30</td>
<td>3.1</td>
<td>22</td>
<td>L</td>
</tr>
<tr>
<td>3</td>
<td>Front Fork Clamp Bolts (Lower)</td>
<td>20</td>
<td>2.0</td>
<td>15</td>
<td>AL</td>
</tr>
<tr>
<td>4</td>
<td>Front Fork Clamp Bolts (Upper)</td>
<td>20</td>
<td>2.0</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Front Fork Top Plugs</td>
<td>25</td>
<td>2.5</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

AL: Tighten the two clamp bolts alternately two times to ensure even tightening torque.
G: Apply grease.
L: Apply a non-permanent locking agent.
R: Replacement Parts

http://mototh.com
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque (N·m)</th>
<th>Torque (kgf·m)</th>
<th>Torque (ft·lb)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rear Shock Absorber Bolt</td>
<td>59</td>
<td>6.0</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Rear Shock Absorber Nut</td>
<td>59</td>
<td>6.0</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Swingarm Pivot Shaft Nut</td>
<td>108</td>
<td>11.0</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

G: Apply grease.
R: Replacement Parts
13-6 SUSPENSION

Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Fork (Per One Unit)</td>
<td></td>
</tr>
<tr>
<td>Fork Inner Tube Outside Diameter</td>
<td>41 mm (1.6 in.)</td>
</tr>
<tr>
<td>Air Pressure</td>
<td>Atmospheric pressure (Non-adjustable)</td>
</tr>
<tr>
<td>Fork Spring Setting</td>
<td>Non-adjustable</td>
</tr>
<tr>
<td>Damper Setting</td>
<td>Non-adjustable</td>
</tr>
<tr>
<td>Fork Oil:</td>
<td></td>
</tr>
<tr>
<td>Viscosity</td>
<td>KAYABA KHL34-G10 or equivalent</td>
</tr>
<tr>
<td>Amount</td>
<td>approx. 390 mL (13.2 US oz.) (when changing oil)</td>
</tr>
<tr>
<td></td>
<td>458 ±4 mL (15.5 ±0.14 US oz.) (after disassembly and completely dry)</td>
</tr>
<tr>
<td>Fork Oil Level</td>
<td>115 ±2 mm (4.5 ±0.08 in.) (below from inner tube top with fully compressed, without fork spring)</td>
</tr>
<tr>
<td>Fork Spring Free Length</td>
<td>277.8 mm (10.94 in.) (Service limit 272 mm (10.7 in.))</td>
</tr>
<tr>
<td>Rear Shock Absorber</td>
<td></td>
</tr>
<tr>
<td>Spring Preload</td>
<td>3rd position (Adjustable Range: 1st – 7th position)</td>
</tr>
<tr>
<td>Gas Pressure</td>
<td>980 kPa (10 kgf/cm², 142 psi, Non-adjustable)</td>
</tr>
</tbody>
</table>

http://mototh.com
Special Tools

Inside Circlip Pliers: 57001-143

Fork Cylinder Holder Handle: 57001-183

Fork Cylinder Holder Adapter: 57001-1057

Oil Seal & Bearing Remover: 57001-1058

Bearing Driver Set: 57001-1129

Jack: 57001-1238

Fork Oil Seal Driver, ø41: 57001-1288

Fork Oil Level Gauge: 57001-1290

Jack Attachment: 57001-1608

Stem Bearing Driver, ø28: 57001-1610

http://mototh.com
13-8 SUSPENSION

Special Tools

Spacer, Ø28:
57001-1663
Front Fork

Front Fork Removal

- Remove:
 - Front Wheel (see Front Wheel Removal in the Wheels/Tires chapter)
 - Front Fender (see Front Fender Removal in the Frame chapter)
- Loosen the upper fork clamp bolt [A] and fork top plug [B] beforehand if the fork leg is to be disassembled.

 NOTE
 - Loosen the top plug after loosening the upper fork clamp bolt.
- Loosen the upper fork clamp bolt and lower fork clamp bolts [C].
- With a twisting motion, work the fork leg down and out.

Front Fork Installation

- Install the fork with the upper end of the inner tube flush [A] against the top surface of the stem head [B].
- Tighten:
 - Torque - Front Fork Clamp Bolts (Lower): 20 N·m (2.0 kgf·m, 15 ft·lb)
 - Front Fork Top Plug: 25 N·m (2.5 kgf·m, 18 ft·lb)

 NOTE
 - Tighten the top plug before tightening the upper fork clamp bolt.
 - Tighten the two clamp bolts alternately two times to ensure even tightening torque.
- Tighten:
 - Torque - Front Fork Clamp Bolt (Upper): 20 N·m (2.0 kgf·m, 15 ft·lb)
- Install the removed parts (see appropriate chapters).

Front Fork Oil Change

- Remove the front fork (see Front Fork Removal).
- Remove:
 - Top Plug [A] with O-ring
 - Collar [B]
 - Fork Spring Seat [C]
 - Fork Spring [D]
13-10 SUSPENSION

Front Fork

• Compress [A] the fork [B] upside down to draw out the oil into the suitable container [C].
• Pour in the specified amount of oil.

Fork Oil

Viscosity: KAYABA KHL34-G10 or equivalent

Amount (Per Side):
- When changing oil: approx. 390 mL (13.2 US oz.)
- After disassembly and completely dry: 458 ±4 mL (15.5 ±0.14 US oz.)

NOTE

○ Move the outer tube up and down a few times to remove the air that is trapped in the fork oil in order to stabilize the oil level.

• Hold the outer tube vertically in a vise and compress the fork completely.
• Wait until the oil level stabilizes.
• Use the fork oil level gauge [A] to measure the distance between the top of the inner tube to the oil level.

Special Tool - Fork Oil Level Gauge: 57001-1290

○ Set the oil level gauge stopper [B] so that the distance [C] from the bottom of the stopper to the lower end of the pipe is the standard oil level distance.
○ A correct measurement can not be obtained unless the level gauge pipe is placed in the center of the inner tube.

Oil Level (fully compressed, without spring)

Standard: 115 ±2 mm (4.5 ±0.08 in.)

○ Place the stopper of the level gauge at the top [D] of the inner tube [E] and pull the handle slowly to draw out the excess oil from fork into the gauge, thus attaining the standard level.
○ If not oil is drawn out, there is not enough oil in the fork. Pour in some more oil and measure again.

• Repeat the same procedure for adjusting the other fork.
• Install the fork spring [A], fork spring seat [B] and collar [C].
• Inspect the top plug O-ring and replace it with a new one.
• Install the front fork (see Front Fork Installation).
Front Fork

Front Fork Disassembly
- Remove the front fork (see Front Fork Removal).
- Remove the top plug [A] with O-ring, take out the collar [B], fork spring seat [C], and fork spring [D].
- Drain the fork oil (see Front Fork Oil Change).

- Remove the Allen bolt [A] from the bottom of the fork.

 Special Tools - Fork Cylinder Holder Handle [B]: 57001-183
 Fork Cylinder Holder Adapter [C]: 57001-1057

 NOTE
 ○Hold the outer tube in a vise [D], stop the cylinder unit [E] from turning by using the special tools, and unscrew the Allen bolt.

- Remove the cylinder unit [A], washer, and the spring [B] from the inner tube.

- Remove the following from the top of the outer tube.
 Dust Seal [A]
 Retaining Ring [B]

- Separate the inner tube [A] from the outer tube [B].

 NOTE
 ○From the compressed state, firmly pull down the outer tube a few times towards the direction of elongation.
13-12 SUSPENSION

Front Fork

- Remove the following from the inner tube.
 - Inner Guide Bushing [A]
 - Outer Guide Bushing [B]
 - Washer [C]
 - Oil Seal [D]

- Remove the cylinder base [A] from the bottom of the outer tube.

Front Fork Assembly

- Check the top plug O-ring and replace it with a new one.
- Replace the following parts with new ones.
 - Retaining Ring [A]
 - Dust Seal [B]
 - Oil Seal [C]
 - Inner Guide Bushing [D]
 - Outer Guide Bushing [E]
 - Fork Bottom Allen Bolt Gasket [F]

- Install the guide bushing on the end of the inner tube.
- Insert the cylinder unit and the spring into the inner tube, and install the cylinder base [A] onto the cylinder end [B] that protrudes from the bottom.
 - Install the cylinder base starting with its stepped end.
- Insert the inner tube, cylinder unit, washer, spring, and cylinder base as a set into the outer tube.

- Install the guide bushing into the outer tube.
- After installing the washer, install the oil seal [A] by using the fork oil seal driver [B].
 - Special Tool - Fork Oil Seal Driver, φ41: 57001-1288
- Install the retaining ring into the outer tube.
- Install the dust seal by hand.

http://mototh.com
Front Fork

- Apply non-permanent locking agent to the threads of the bottom Allen bolt [A].
- Hold the front fork horizontally in a vise [B].
- Hold the cylinder unit [C] with the special tools and tighten the bottom Allen bolt to secure the cylinder in place.

Torque - Front Fork Bottom Allen Bolt: 30 N·m (3.1 kgf·m, 22 ft·lb)

Special Tools - Fork Cylinder Holder Handle [D]: 57001-183
Fork Cylinder Holder Adapter [E]: 57001-1057

- Pour in the specified type of oil (see Front Fork Oil Change).

Inner Tube Inspection

- Visually inspect the inner tube [A], and repair any damage.
- Nicks or rust damage can sometimes be repaired by using a wet-stone to remove sharp edges or raised areas which cause seal damage.
 - If the damage is not repairable, replace the inner tube.
 - Since damage to the inner tube damages the oil seal, replace the oil seal whenever the inner tube is repaired or replaced.

CAUTION

If the inner tube is badly bent or creased, replace it. Excessive bending, followed by subsequent straightening, can weaken the inner tube.

- Temporarily assemble the inner and outer tubes, and pump them back and forth manually to check for smooth operation.
- If you feel binding or catching, the inner and outer tubes must be replaced.

WARNING

A straightened inner or outer fork tube may fall in use, possibly causing an accident. Replace a badly bent or damaged inner or outer tube and inspect the other tube carefully before reusing it.

Dust Seal Inspection

- Inspect the dust seal [A] for any signs of deterioration or damage.
 - Replace it if necessary.
Fork Spring Inspection

- Measure the free length [A] of the fork spring [B].
- If the measured length is shorter than the service limit, the spring must be replaced. If the free length of the replacement spring and that of the remaining spring vary greatly, the remaining spring should also be replaced in order to keep the fork legs balanced to ensure stability.

Fork Spring Free Length

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>277.8 mm (10.94 in.)</td>
</tr>
<tr>
<td>Service Limit</td>
<td>272 mm (10.7 in.)</td>
</tr>
</tbody>
</table>
Rear Shock Absorber

Spring Preload Adjustment
• Using the hook wrench [A], turn the adjusting nut [B] to adjust the spring preload.
○ The standard adjuster setting for average-build rider of 68 kg (150 lb) with no passenger and no accessories is 3rd position.

Spring Preload Setting
 Standard Position: 3rd position
 Adjustable Range: 1st to 7th position

• If the compression of the spring is not suited to the operating conditions, adjust it to an appropriate position by referring to the table below.

<table>
<thead>
<tr>
<th>Adjuster Position</th>
<th>Damping Force</th>
<th>Shock Absorber Hardness</th>
<th>Load</th>
<th>Road Conditions</th>
<th>Driving Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Weak</td>
<td>Soft</td>
<td>Light</td>
<td>Good</td>
<td>Low</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>7th</td>
<td>Strong</td>
<td>Hard</td>
<td>Heavy</td>
<td>Bad</td>
<td>Highway</td>
</tr>
</tbody>
</table>

Rear Shock Absorber Removal
• Remove:
 - Frame Covers (see Frame Cover Removal in the Frame chapter)
 - Muffler Body (see Muffler Body Removal in the Engine Top End chapter)
• Raise the rear wheel off the ground with jack.
 - Special Tools - Jack: 57001-1238
 - Jack Attachment: 57001-1608
• Squeeze the brake lever slowly and hold it with a band [A].

WARNING
Be sure to hold the front brake when removing the shock absorber, or the motorcycle may fall over. It could cause an accident and injury.

• Remove:
 - Right Stay Cover [A]
13-16 SUSPENSION

Rear Shock Absorber

- Remove:
 - Upper Shock Absorber Bolt [A]
 - Lower Shock Absorber Nut and Washer
 - Lower Shock Absorber Bolt [B]
- Remove the shock absorber [C] from backward.

Rear Shock Absorber Installation

- Installation is the reverse of removal.
- Apply grease to the lip of oil seals and bearing of rear shock absorber.
 ○ Be sure to install the oil seals to the shock absorber.
- Tighten:
 - Torque - Rear Shock Absorber Bolt: 59 N·m (6.0 kgf·m, 44 ft·lb)
 - Rear Shock Absorber Nut: 59 N·m (6.0 kgf·m, 44 ft·lb)
- Install the removed parts (see appropriate chapters).

Rear Shock Absorber Inspection

- Remove the rear shock absorber (see Rear Shock Absorber Removal).
- Visually inspect the following items.
 - Smooth Stroke
 - Oil Leakage
 - Crack or Dent
 - If there is any damage to the rear shock absorber, replace it.
- Visually inspect the rubber bushing.
 - If it show any signs of damage, replace it.
Swingarm

Swingarm Removal

- Remove:
 - Chain Cover Bolts [A] and Cover [B]

- Remove:
 - Right Side Cover (see Side Cover Removal in the Frame chapter)
 - Frame Covers (see Frame Cover Removal in the Frame chapter)

- Remove the brake hose banjo bolt from the rear caliper, free the brake hose [A] from the clamps [B], and remove the footpeg stay with the rear master cylinder (see Rear Caliper Removal in the Brakes chapter).

- Remove:
 - Muffler Body (see Muffler Body Removal in the Engine Top End chapter)
 - Rear Wheel (see Rear Wheel Removal in the Wheels/Tires chapter)

- Raise the rear wheel off the ground with jack.

Special Tools - Jack: 57001-1238
Jack Attachment: 57001-1608

- Remove the lower shock absorber nut and bolt [A].

- Remove the drive chain (see Drive Chain Removal in the Final Drive chapter).

- Unscrew the swingarm pivot shaft nut [A].

- Pull off the pivot shaft [B], and remove the swingarm.

Swingarm Installation

- Installation is the reverse of removal.
 - Apply grease to the lip of the oil seals.
 - Be sure to install the oil seal and collar to the swingarm.
 - Tighten the pivot shaft nut.

 Torque - Swingarm Pivot Shaft Nut: 108 N-m (11.0 kgf-m, 80 ft-lb)

- Install the removed parts (see appropriate chapters).
13-18 SUSPENSION

Swingarm

Swingarm Bearing Removal

- Remove:
 - Swingarm (see Swingarm Removal)
 - Collar [A]
 - Oil Seals [B]
 - Sleeve [C]
 - Circlip [D]
 - Special Tool - Inside Circlip Pliers: 57001-143

- Remove the ball bearing and needle bearings.
 - Special Tool - Oil Seal & Bearing Remover [A]: 57001-1058

Swingarm Bearing Installation

- Replace the ball and needle bearings [A] with new ones.
- Install the ball and needle bearings so that the manufacturer's marks face out.
 - Special Tools - Bearing Driver Set: 57001-1129
 - Stem Bearing Driver, \(\phi 28 \) [B]: 57001-1610
 - Spacer, \(\phi 28 \): 57001-1663

http://mototh.com
Swingarm

- Install the needle bearings [A], ball bearing [B] and oil seals [C] position as shown.
 Circlip [D]
 25 mm (0.98 in.) [E]
 17 mm (0.67 in.) [F]
 1 mm (0.04 in.) [G]
 0.5 mm (0.02 in.) [H]
 1 mm (0.04 in.) [I]
 23.5 mm (0.93 in.) [J]
 6 mm (0.24 in.) [K]

Swingarm Bearing, Sleeve Inspection

CAUTION

Do not remove the bearings for inspection. Removal may damage them.

- Inspect the needle bearings [A] and ball bearing installed in the swingarm.
 - The rollers and ball in a bearing normally wear very little, and wear is difficult to measure. Instead of measuring, visually inspect the bearing for abrasion, discoloration, or other damage.
 - If the needle bearing and sleeve [B] show any signs of abnormal wear, discoloration, or damage, replace them as a set.
13-20 SUSPENSION

Swingarm

- Turn the bearing in the swingarm back and forth [A] while checking for plays, roughness, or binding.
- If the bearing play, roughness, or binding is found, replace the bearing.
- Examine the bearing seal [B] for tears or leakage.
- If the seal is torn or is leaking, replace the bearing.

Swingarm Bearing Lubrication

NOTE

- Since the bearings are packed with grease and sealed, lubrication is not required.

Chain Guide Inspection

- Refer to the Chain Guide Wear Inspection in the Periodic Maintenance chapter.
Steering

Table of Contents

Exploded View .. 14-2
Special Tools .. 14-4
Steering .. 14-5
 Steering Inspection ... 14-5
 Steering Adjustment .. 14-5
Steering Stem ... 14-6
 Stem, Stem Bearing Removal .. 14-6
 Stem, Stem Bearing Installation .. 14-7
 Stem Bearing Lubrication .. 14-8
Steering Stem Warp ... 14-9
 Stem Cap Deterioration, Damage .. 14-9
Handlebar ... 14-10
 Handlebar Removal ... 14-10
 Handlebar Installation ... 14-10
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>1</td>
<td>Front Fork Clamp Bolts (Lower)</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>Front Fork Clamp Bolts (Upper)</td>
<td>20</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>Handlebar Holder Bolts</td>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>Left Switch Housing Screws</td>
<td>3.5</td>
<td>0.36</td>
</tr>
<tr>
<td>5</td>
<td>Right Switch Housing Screws</td>
<td>3.5</td>
<td>0.36</td>
</tr>
<tr>
<td>6</td>
<td>Steering Stem Head Bolt</td>
<td>108</td>
<td>11.0</td>
</tr>
<tr>
<td>7</td>
<td>Steering Stem Nut</td>
<td>20</td>
<td>2.0</td>
</tr>
</tbody>
</table>

AD: Apply adhesive.
AL: Tighten the two clamp bolts alternately two times to ensure even tighten torque.
G: Apply grease.
L: Apply a non-permanent locking agent.
R: Replacement Parts
S: Follow the specified tightening sequence.
14-4 STEERING

Special Tools

Steering Stem Nut Wrench:
57001-1100

Bearing Driver Set:
57001-1129

Steering Stem Bearing Driver, ø42.5:
57001-1344

Steering Stem Bearing Driver Adapter, ø41.5:
57001-1345

http://mototh.com
Steering

Steering Inspection
- Refer to the Steering Play Inspection in the Periodic Maintenance chapter.

Steering Adjustment
- Refer to the Steering Play Adjustment in the Periodic Maintenance chapter.
14-6 STEERING

Steering Stem

Stem, Stem Bearing Removal

- Remove:
 - Front Wheel (see Front Wheel Removal in the Wheels/Tires chapter)
 - Headlight Assy (see Headlight Removal/Installation in the Electrical System chapter)
 - Handlebar (see Handlebar Removal)
 - Steering Stem Head Bolt Plug [A]
 - Steering Stem Head Bolt [B] and Washer
 - Front Fork Clamp Bolts (Upper) [C] (Loosen)
 - Steering Stem Head [D]

- Remove:
 - Under Bracket [A] (see Upper Fairing Bracket Removal in the Frame chapter)
 - Front Forks (see Front Fork Removal in the Suspension chapter)

- Straighten the claws [A] of the claw washer.
- Remove the steering stem locknut [B] and claw washer [C].

- Pushing up the stem base, and remove the steering stem nut [A] with stem cap [B].

Special Tool - Steering Stem Nut Wrench [C]: 57001-1100

- Remove the steering stem [D] under side.
- Remove the upper stem bearing inner race and bearing.

- To remove the bearing outer races [A] pressed into the head pipe [B], insert a bar [C] into the recesses of head pipe, and applying it to both recess alternately hammer it to drive the race out.

NOTE

○ *If either steering stem bearing is damaged, it is recommended that both the upper and lower bearings (including outer races) should be replaced with new ones.*

http://mototh.com
Steering Stem

- Remove the lower bearing inner race [A] which is pressed onto the steering stem with a suitable commercially available chisel [B].

Stem, Stem Bearing Installation
- Replace the bearing outer races with new ones.
- Apply grease to the outer races, and drive them into the head pipe at the same time.

Special Tool - Bearing Driver Set [A]: 57001-1129

- Replace the bearing inner races and oil seal with new ones.
- Apply grease to the oil seal.
- Drive the lower ball bearing inner race applied the grease onto the stem.

Special Tools - Steering Stem Bearing Driver, φ42.5 [A]: 57001-1344
Steering Stem Bearing Driver Adapter, φ41.5 [B]: 57001-1345

- Apply grease to the lower ball bearing [A], and install it onto the stem.
- Apply grease to the upper ball bearing [B] and inner race [C].

- Install the stem [A] through the head pipe and install the ball bearing [B] and inner race [C] on it.
- Install the stem cap [D] and steering stem nut [E].

http://mototh.com
14-8 STEERING

Steering Stem

- Settle the inner races in place as follows.
 ○ Tighten the steering stem nut with 39 N·m (4.0 kgf·m, 29 ft·lb) of torque first, and loosen it a fraction of a turn until it turns lightly. Afterward tighten it again with specified torque using a stem nut wrench [A] in the direction shown.
 ○ Check that there is no play and the steering stem turns smoothly without rattles. If not, the steering stem bearings may be damaged.

Special Tool - Steering Stem Nut Wrench: 57001-1100

Torque - Steering Stem Nut: 20 N·m (2.0 kgf·m, 15 ft·lb)

- Install the claw washer [A] so that its bent side [B] faces upward, and engage the bent claws with the grooves of stem locknut [C].
- Hand tighten the stem locknut until it touches the claw washer.
- Tighten the stem locknut clockwise until the claws are aligned with the grooves (ranging from 2nd to 4th) of stem nut [D], and bend the 2 claws downward [E].
- Install the stem head.
- Install the washer, and tighten the stem head bolt with specified torque.
- Install the front forks (see Front Fork Installation in the Suspension chapter).

NOTE
○ Tighten the upper fork clamp bolts first, next the stem head bolt, last the lower fork clamp bolts.
○ Tighten the two clamp bolts alternately two times to ensure even tightening torque.

Torque - Front Fork Clamp Bolts (Upper): 20 N·m (2.0 kgf·m, 15 ft·lb)
Steering Stem Head Bolt: 108 N·m (11.0 kgf·m, 80 ft·lb)
Front Fork Clamp Bolts (Lower): 20 N·m (2.0 kgf·m, 15 ft·lb)

WARNING
Do not impede the handlebar turning by routing the cables, harnesses and hoses improperly (see Cable, Wire, and Hose Routing section in the Appendix chapter).

- Install the steering stem head bolt plug.
- Install the removed parts (see appropriate chapters).

Stem Bearing Lubrication
- Refer to the Steering Stem Bearing Lubrication in the Periodic Maintenance chapter.
Steering Stem

Steering Stem Warp
● Whenever the steering stem is removed, or if the steering cannot be adjusted for smooth action, check the steering stem for straightness.
★ If the steering stem [A] is bent, replace the steering stem.

Stem Cap Deterioration, Damage
★ Replace the stem cap if its oil seal [A] shows damage.
14-10 STEERING

Handlebar

Handlebar Removal
• Remove:
 Clutch Lever Assembly [A]
 Left Switch Housing [B]
 Left Handlebar Weight [C]

 • Remove:
 Front Brake Master Cylinder [A] (see Front Master Cylinder Removal in the Brakes chapter)
 Right Switch Housing [B]
 Right Handlebar Weight [C]
 Throttle Grip [D]

 • Remove the handlebar holder bolts [A].
 • Remove the handlebar holder [B] and then pull out the handlebar.

Handlebar Installation
• Align the punch mark [A] on the handlebar and the corner edge [B] on the stem head.

• Tighten the front holder bolts first, and then the rear holder bolts. There will be a gap [A] at the rear part of the handlebar holder after tightening.

 Torque - Handlebar Holder Bolts: 25 N·m (2.5 kgf-m, 18 ft·lb)
Handlebar

- Install the clutch lever (see Clutch Lever Installation in the Clutch chapter).
- Apply adhesive cement to the inside of the left handlebar grip.
- Apply a non-permanent locking agent to the left handlebar weight bolt.
- Install the left switch housing.
 - Fit the projection [A] into a small hole [B] in the handlebar.
 - **Torque - Left Switch Housing Screws: 3.5 N·m (0.36 kgf·m, 31 in·lb)**

- Install:
 - Throttle Grip
 - Throttle Cable Tips [A]
 - Right Switch Housing
 - Fit the projection [B] into a small hole [C] in the handlebar.
 - **Torque - Right Switch Housing Screws: 3.5 N·m (0.36 kgf·m, 31 in·lb)**

- Apply a non-permanent locking agent to the right handlebar weight bolt.
- Install the front brake master cylinder (see Front Master Cylinder Installation in the Brakes chapter).
Frame

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploded View</td>
<td>15-2</td>
</tr>
<tr>
<td>Seat</td>
<td>15-8</td>
</tr>
<tr>
<td>Seat Removal</td>
<td>15-8</td>
</tr>
<tr>
<td>Seat Installation</td>
<td>15-8</td>
</tr>
<tr>
<td>Fairings</td>
<td>15-9</td>
</tr>
<tr>
<td>Lower Fairing Removal</td>
<td>15-9</td>
</tr>
<tr>
<td>Lower Fairing Installation</td>
<td>15-9</td>
</tr>
<tr>
<td>Center Fairing Removal</td>
<td>15-9</td>
</tr>
<tr>
<td>Center Fairing Installation</td>
<td>15-9</td>
</tr>
<tr>
<td>Upper Fairing Removal</td>
<td>15-10</td>
</tr>
<tr>
<td>Upper Fairing Installation</td>
<td>15-10</td>
</tr>
<tr>
<td>Inner Fairing Bracket Removal</td>
<td>15-10</td>
</tr>
<tr>
<td>Inner Fairing Installation</td>
<td>15-11</td>
</tr>
<tr>
<td>Side Covers</td>
<td>15-12</td>
</tr>
<tr>
<td>Side Cover Removal</td>
<td>15-12</td>
</tr>
<tr>
<td>Side Cover Installation</td>
<td>15-12</td>
</tr>
<tr>
<td>Seat Covers</td>
<td>15-13</td>
</tr>
<tr>
<td>Seat Cover Removal</td>
<td>15-13</td>
</tr>
<tr>
<td>Seat Cover Installation</td>
<td>15-13</td>
</tr>
<tr>
<td>Fenders</td>
<td>15-14</td>
</tr>
<tr>
<td>Front Fender Removal</td>
<td>15-14</td>
</tr>
<tr>
<td>Front Fender Installation</td>
<td>15-14</td>
</tr>
<tr>
<td>Flap and Rear Fender Rear Removal</td>
<td>15-14</td>
</tr>
<tr>
<td>Flap and Rear Fender Rear Installation</td>
<td>15-14</td>
</tr>
<tr>
<td>Rear Fender Front Removal</td>
<td>15-15</td>
</tr>
<tr>
<td>Rear Fender Front Installation</td>
<td>15-15</td>
</tr>
<tr>
<td>Frame</td>
<td>15-16</td>
</tr>
<tr>
<td>Frame Inspection</td>
<td>15-16</td>
</tr>
<tr>
<td>Sidestand</td>
<td>15-17</td>
</tr>
<tr>
<td>Sidestand Removal</td>
<td>15-17</td>
</tr>
<tr>
<td>Sidestand Installation</td>
<td>15-17</td>
</tr>
<tr>
<td>Frame Cover</td>
<td>15-18</td>
</tr>
<tr>
<td>Frame Cover Removal</td>
<td>15-18</td>
</tr>
<tr>
<td>Frame Cover Installation</td>
<td>15-18</td>
</tr>
<tr>
<td>Rear View Mirrors</td>
<td>15-19</td>
</tr>
<tr>
<td>Rear View Mirrors Removal</td>
<td>15-19</td>
</tr>
<tr>
<td>Rear View Mirrors Installation</td>
<td>15-19</td>
</tr>
</tbody>
</table>
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>1</td>
<td>Footpeg Stay Bolts</td>
<td>34</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>Sidestand Bolt</td>
<td>44</td>
<td>4.5</td>
</tr>
<tr>
<td>3</td>
<td>Sidestand Switch Bolt</td>
<td>8.8</td>
<td>0.90</td>
</tr>
</tbody>
</table>

G: Apply grease.
L: Apply a non-permanent locking agent.
R: Replacement Parts
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>1</td>
<td>Front Fender Bolts</td>
<td>3.9</td>
<td>0.40</td>
</tr>
</tbody>
</table>
| 2 | Front Fender Bracket Bolts | 8.8 | 0.90 | 78 in·lb | L

L: Apply a non-permanent locking agent.
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>1</td>
<td>Grab Rail Mounting Bolts</td>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>Lower Fairing Mounting Bolts</td>
<td>8.8</td>
<td>0.90</td>
</tr>
</tbody>
</table>
15-8 FRAME

Seat

Seat Removal
• Insert the ignition switch key [A] into the seat lock, turning the key clockwise, pulling up on the rear of the seat [B], and pulling the seat backward.

Seat Installation
• Slip the seat hook [A] under the brace [B] on the fuel tank bracket.
• Insert the seat latch [A] into the latch hole [B].
• Push down the rear part of the seat until the lock clicks.
Fairings

Lower Fairing Removal
- Remove the mounting bolts [A] and lower fairing [B].

Lower Fairing Installation
- Install the lower fairing, and tighten the mounting bolts.
 Torque - Lower Fairing, Mounting Bolts: 8.8 N·m (0.90 kgf·m, 78 in·lb)

Center Fairing Removal
- Remove the mounting bolts [A].
- Pull the center fairing [B] evenly outward to clear the stoppers.
 - Disconnect the turn signal lead connector [A].
- Remove the inner fairing (see Inner Fairing Removal).
- Remove the bracket screws [A] and turn signal light [B].

Center Fairing Installation
- Install the turn signal light to the center fairing.
- Install the inner fairing (see Inner Fairing Installation).
15-10 FRAME

Fairings

- Connect the turn signal lead connector.
- Insert the projections [A] into the holes [B].
- Install the mounting bolts.

Upper Fairing Removal

- Remove:
 - Headlight Assy (see Headlight Removal/Installation in the Electrical System chapter)
 - Mounting Bolts [A]
 - Upper Fairings

Upper Fairing Installation

- Installation is the reverse of removal.

Upper Fairing Bracket Removal

- Remove:
 - Headlight Assy (see Headlight Removal/Installation in the Electrical System chapter)
 - Meter Unit (see Meter Unit Removal in the Electrical System chapter)
 - Bolts [A]
 - Free the following parts from the bracket.
 - Clutch Cable
 - Ignition Switch Lead
 - Main Harness
 - Brake Hose
 - Throttle Cables
 - Switch Housing Leads
 - Remove the upper fairing bracket [B].

- Remove:
 - Clamp [A]
 - Bolts [B]
 - Under Bracket [C]

http://mototh.com
Fairings

Inner Fairing Removal

• Remove:
 Center Fairings (see Center Fairing Removal)
 Mounting Screws [A]
 Inner Fairing [B]

Inner Fairing Installation

• Tighten the mounting screws.
• Install the center fairings (see Center Fairing Installation).
15-12 FRAME
Side Covers

Side Cover Removal
• Remove the seat (see Seat Removal).
• Remove the bolt [A].
• Pull the side cover [B] evenly outward to clear the stoppers.

Side Cover Installation
• Insert the tabs [A] into the holes [B].
• Tighten the bolt.
• Install the seat (see Seat Installation).
Seat Covers

Seat Cover Removal
- Remove:
 - Seat (see Seat Removal)
 - Bolts [A]
 - Grab Rails [B]
 - Screw Rivets [C]

- Push the central pin, and then remove the quick rivets [A].
- Pull the front and rear portions of the seat cover outside, and then remove the seat covers.

Seat Cover Installation
- Installation is the reverse of removal.
- Put the projection [A] into the grommet [B] on the rear fender rear.

- Put the projection [A] into the hole [B] of the seat cover.
- Install:
 - Grab Rails and Bolts
 - Torque - Grab Rail Mounting Bolts: 25 N·m (2.5 kgf·m, 18 ft·lb)

- Insert the projections [A] of the center seat cover into the holes [B] of the side seat cover.
- Install:
 - Screw Rivets
 - Seat (see Seat Installation)
15-14 FRAME

Fenders

Front Fender Removal
- Remove:
 Brake Hose Clamps [A]
 Bolts [B] with Collar (Both Side)
- Remove the front fender [C].

Front Fender Installation
- Tighten:
 Torque - Front Fender Bolts: 3.9 N·m (0.40 kgf·m, 35 in·lb)
- Install the brake hose clamps to the front fender holes.

Flap and Rear Fender Rear Removal
- Remove:
 Seat (see Seat Removal)
 Seat Covers (see Seat Cover Removal)
 Tail/Brake Light [A] (see Tail/Brake Light Removal in the Electrical System chapter)
- Remove:
 Nuts [A] and Bolts [B]
 Flap (with License Plate Light)
- Remove:
 Seat Lock Cable Lower End [A]
 Quick Rivet [B]
- Free the clamps from the rear fender rear.
- Pull out the rear fender rear backward and downward.

Flap and Rear Fender Rear Installation
- Installation is the reverse of removal.
Fenders

Rear Fender Front Removal

- Remove:
 - Rear Fender Rear (see Flap and Rear Fender Rear Removal)
 - Battery (see Battery Removal in the Electrical System chapter)
 - Relay Box (see Relay Box Removal in the Electrical System chapter)
 - Starter Relay (see Starter Relay Inspection in the Electrical System chapter)
- Remove the fuse box from the rear fender front.
- Remove:
 - Bolt [A]
 - Clamp [B]
- Free the clamp from the rear fender front.
- Remove the rear fender front [A] backward and upward.

Rear Fender Front Installation

- Installation is the reverse of removal.
- Install the removed parts (see appropriate chapters).
15-16 FRAME

Frame

Frame Inspection
• Visually inspect the frame for cracks, dents, bending or warp.
○ If there is any damage to the frame, replace it.

WARNING

A repaired frame may fail in use, possibly causing an accident. If the frame is bent, dented, cracked, or warped, replace it.
Sidestand

Sidestand Removal
• Raise the rear wheel off the ground with stand.
• Remove:
 Frame Cover (see Frame Cover Removal)
 Bolts [A]
 Footpeg Stay [B]

• Remove:
 Sidestand Switch Bolt [A] with Clamp
 Sidestand Switch [B]

• Remove:
 Spring [A]
 Sidestand Nut [B]
 Sidestand Bolt [C]
 Sidestand [D]

Sidestand Installation
• Apply grease to the sliding area [A] of the sidestand [B].
• Tighten the bolt and lock them with the nut.
 Torque - Sidestand Bolt: 44 N·m (4.5 kgf·m, 33 ft·lb)
• Hook the spring.
• Install the sidestand switch.
 ○Apply a non-permanent locking agent to the thread of the switch bolt.
 Torque - Sidestand Switch Bolt: 8.8 N·m (0.90 kgf·m, 78 in·lb)
• Install the footpeg stay.
• Tighten:
 Torque - Footpeg Stay Bolts: 34 N·m (3.5 kgf·m, 25 ft·lb)

http://mototh.com
Frame Cover

Frame Cover Removal
- Remove the bolt [A].
- Pull the frame cover [B] outward to clear the stoppers.

Frame Cover Installation
- Insert the projections [A] into the holes [B].
- Tighten the bolt.
Rear View Mirrors

Rear View Mirrors Removal
• Loosen the lower hexagonal area [A] for tightening to remove the rear view mirror from the holder.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not force to tighten and/or loosen the upper hexagonal area (adapter) [B] with a pair of spanners. Disassembly of this area is Not Available. Non-permanent locking agent [C] is already applied to the threads of this inner area. Forcible loosening may damage the adapter and/or the turning mechanism of the stay [D].</td>
</tr>
</tbody>
</table>

Rear View Mirrors Installation
• Screw the mounting area of the right rear view mirror into the holder all the way, and tighten the lower hexagonal area for tightening securely.
 - Lower Hexagonal Area for Tightening [A]
 - Upper Hexagonal Area (Adapter) [B]
 - Rear View Mirror (Right) [C]

• Turn the stay [A] to assure the safe conditions of the rear with the operator sat on the motorcycle.
• Adjust the rear view mirror slightly with its mirror [B].
○ Installation and adjustment of the left side are common with those of the right side. Follow the procedure specified at the right side.

http://mototh.com
Electrical System

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploded View</td>
<td>16-3</td>
</tr>
<tr>
<td>Specifications</td>
<td>16-10</td>
</tr>
<tr>
<td>Special Tools and Sealants</td>
<td>16-11</td>
</tr>
<tr>
<td>Parts Location</td>
<td>16-12</td>
</tr>
<tr>
<td>Wiring Diagram</td>
<td>16-14</td>
</tr>
<tr>
<td>Precautions</td>
<td>16-16</td>
</tr>
<tr>
<td>Electrical Wiring</td>
<td>16-18</td>
</tr>
<tr>
<td>Wiring Inspection</td>
<td>16-18</td>
</tr>
<tr>
<td>Battery</td>
<td>16-19</td>
</tr>
<tr>
<td>Battery Removal</td>
<td>16-19</td>
</tr>
<tr>
<td>Battery Installation</td>
<td>16-19</td>
</tr>
<tr>
<td>Battery Activation</td>
<td>16-19</td>
</tr>
<tr>
<td>Precautions</td>
<td>16-22</td>
</tr>
<tr>
<td>Interchange</td>
<td>16-22</td>
</tr>
<tr>
<td>Charging Condition Inspection</td>
<td>16-23</td>
</tr>
<tr>
<td>Refreshing Charge</td>
<td>16-23</td>
</tr>
<tr>
<td>Charging System</td>
<td>16-25</td>
</tr>
<tr>
<td>Alternator Cover Removal</td>
<td>16-25</td>
</tr>
<tr>
<td>Alternator Cover Installation</td>
<td>16-25</td>
</tr>
<tr>
<td>Stator Coil Removal</td>
<td>16-25</td>
</tr>
<tr>
<td>Stator Coil Installation</td>
<td>16-25</td>
</tr>
<tr>
<td>Alternator Rotor Removal</td>
<td>16-26</td>
</tr>
<tr>
<td>Alternator Rotor Installation</td>
<td>16-26</td>
</tr>
<tr>
<td>Alternator Rotor Installation</td>
<td>16-26</td>
</tr>
<tr>
<td>Alternator Inspection</td>
<td>16-28</td>
</tr>
<tr>
<td>Regulator/Rectifier Inspection</td>
<td>16-29</td>
</tr>
<tr>
<td>Charging Voltage Inspection</td>
<td>16-31</td>
</tr>
<tr>
<td>Starter Motor Clutch</td>
<td>16-33</td>
</tr>
<tr>
<td>Starter Motor Clutch Removal/Installation</td>
<td>16-33</td>
</tr>
<tr>
<td>Starter Motor Clutch Inspection</td>
<td>16-33</td>
</tr>
<tr>
<td>Starter Motor Clutch Disassembly</td>
<td>16-33</td>
</tr>
<tr>
<td>Ignition System</td>
<td>16-34</td>
</tr>
<tr>
<td>Crankshaft Sensor Removal</td>
<td>16-34</td>
</tr>
<tr>
<td>Crankshaft Sensor Installation</td>
<td>16-35</td>
</tr>
<tr>
<td>Crankshaft Sensor Inspection</td>
<td>16-35</td>
</tr>
<tr>
<td>Crankshaft Sensor Peak Voltage Inspection</td>
<td>16-35</td>
</tr>
<tr>
<td>Timing Rotor Removal</td>
<td>16-36</td>
</tr>
<tr>
<td>Timing Rotor Installation</td>
<td>16-36</td>
</tr>
<tr>
<td>Stick Coil (Ignition Coil together with Spark Plug Cap) Removal</td>
<td>16-36</td>
</tr>
<tr>
<td>Stick Coil (Ignition Coil together with Spark Plug Cap) Installation</td>
<td>16-36</td>
</tr>
<tr>
<td>Stick Coil (Ignition Coil together with Spark Plug Cap) Inspection</td>
<td>16-37</td>
</tr>
<tr>
<td>Stick Coil Primary Peak Voltage</td>
<td>16-37</td>
</tr>
<tr>
<td>Spark Plug Removal</td>
<td>16-38</td>
</tr>
<tr>
<td>Spark Plug Installation</td>
<td>16-38</td>
</tr>
<tr>
<td>Spark Plug Condition Inspection</td>
<td>16-38</td>
</tr>
<tr>
<td>Interlock Operation Inspection</td>
<td>16-39</td>
</tr>
</tbody>
</table>
16-2 ELECTRICAL SYSTEM

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC Igniter Inspection</td>
<td>16-40</td>
</tr>
<tr>
<td>Electric Starter System</td>
<td>16-43</td>
</tr>
<tr>
<td>Starter Motor Removal</td>
<td>16-43</td>
</tr>
<tr>
<td>Starter Motor Installation</td>
<td>16-43</td>
</tr>
<tr>
<td>Starter Motor Disassembly</td>
<td>16-43</td>
</tr>
<tr>
<td>Starter Motor Assembly</td>
<td>16-44</td>
</tr>
<tr>
<td>Commutator Cleaning and Inspection</td>
<td>16-45</td>
</tr>
<tr>
<td>Armature Inspection</td>
<td>16-45</td>
</tr>
<tr>
<td>Brush Lead Inspection</td>
<td>16-46</td>
</tr>
<tr>
<td>Brush Plate and Terminal Bolt Inspection</td>
<td>16-46</td>
</tr>
<tr>
<td>Starter Relay Inspection</td>
<td>16-46</td>
</tr>
<tr>
<td>Lighting System</td>
<td>16-49</td>
</tr>
<tr>
<td>Headlight Beam Horizontal Adjustment</td>
<td>16-49</td>
</tr>
<tr>
<td>Headlight Beam Vertical Adjustment</td>
<td>16-49</td>
</tr>
<tr>
<td>Headlight Bulb Replacement</td>
<td>16-49</td>
</tr>
<tr>
<td>City Light Bulb Replacement</td>
<td>16-50</td>
</tr>
<tr>
<td>Headlight Removal/Installation</td>
<td>16-51</td>
</tr>
<tr>
<td>Tail/Brake Light Removal</td>
<td>16-51</td>
</tr>
<tr>
<td>Tail/Brake Light Installation</td>
<td>16-51</td>
</tr>
<tr>
<td>License Plate Light Bulb Replacement</td>
<td>16-52</td>
</tr>
<tr>
<td>Turn Signal Light Bulb Replacement</td>
<td>16-53</td>
</tr>
<tr>
<td>Turn Signal Relay Inspection</td>
<td>16-54</td>
</tr>
<tr>
<td>Air Switching Valve</td>
<td>16-56</td>
</tr>
<tr>
<td>Air Switching Valve Operation Test</td>
<td>16-56</td>
</tr>
<tr>
<td>Air Switching Valve Unit Test</td>
<td>16-56</td>
</tr>
<tr>
<td>Radiator Fan System</td>
<td>16-58</td>
</tr>
<tr>
<td>Fan Motor Inspection</td>
<td>16-58</td>
</tr>
<tr>
<td>Meter, Gauge, Indicator Unit</td>
<td>16-59</td>
</tr>
<tr>
<td>Meter Unit Removal</td>
<td>16-59</td>
</tr>
<tr>
<td>Meter, Gauge Disassembly</td>
<td>16-59</td>
</tr>
<tr>
<td>Electronic Combination Meter Unit Inspection</td>
<td>16-60</td>
</tr>
<tr>
<td>Switches and Sensors</td>
<td>16-67</td>
</tr>
<tr>
<td>Brake Light Timing Inspection</td>
<td>16-67</td>
</tr>
<tr>
<td>Brake Light Timing Adjustment</td>
<td>16-67</td>
</tr>
<tr>
<td>Switch Inspection</td>
<td>16-67</td>
</tr>
<tr>
<td>Water Temperature Sensor Inspection</td>
<td>16-68</td>
</tr>
<tr>
<td>Speed Sensor Removal</td>
<td>16-68</td>
</tr>
<tr>
<td>Speed Sensor Installation</td>
<td>16-68</td>
</tr>
<tr>
<td>Speed Sensor Inspection</td>
<td>16-69</td>
</tr>
<tr>
<td>Oxygen Sensor Inspection (Europe Models)</td>
<td>16-69</td>
</tr>
<tr>
<td>Oxygen Sensor Installation (Europe Models)</td>
<td>16-69</td>
</tr>
<tr>
<td>Oxygen Sensor Inspection (Europe Models)</td>
<td>16-69</td>
</tr>
<tr>
<td>Fuel Reserve Switch Inspection</td>
<td>16-70</td>
</tr>
<tr>
<td>Relay Box</td>
<td>16-71</td>
</tr>
<tr>
<td>Relay Box Removal</td>
<td>16-71</td>
</tr>
<tr>
<td>Relay Circuit Inspection</td>
<td>16-71</td>
</tr>
<tr>
<td>Diode Circuit Inspection</td>
<td>16-72</td>
</tr>
<tr>
<td>Fuse</td>
<td>16-74</td>
</tr>
<tr>
<td>30 A Main Fuse Removal</td>
<td>16-74</td>
</tr>
<tr>
<td>Fuse Box Fuse Removal</td>
<td>16-74</td>
</tr>
<tr>
<td>15 A ECU Fuse Removal</td>
<td>16-74</td>
</tr>
<tr>
<td>Fuse Installation</td>
<td>16-75</td>
</tr>
<tr>
<td>Fuse Inspection</td>
<td>16-75</td>
</tr>
</tbody>
</table>

http://mototh.com
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N·m</td>
<td>kgf·m</td>
</tr>
<tr>
<td>1</td>
<td>License Plate Light Cover Screws</td>
<td>0.90</td>
<td>0.090</td>
</tr>
<tr>
<td>2</td>
<td>License Plate Light Mounting Screws</td>
<td>1.2</td>
<td>0.12</td>
</tr>
<tr>
<td>3</td>
<td>Meter Screws</td>
<td>1.2</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque (N·m)</th>
<th>Torque (kgf·m)</th>
<th>Torque (ft·lb)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Front Brake Light Switch Screw</td>
<td>1.2</td>
<td>0.12</td>
<td>11 in·lb</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Left Switch Housing Screws</td>
<td>3.5</td>
<td>0.36</td>
<td>31 in·lb</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Right Switch Housing Screws</td>
<td>3.5</td>
<td>0.36</td>
<td>31 in·lb</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Starter Motor Cable Terminal Nut</td>
<td>6.0</td>
<td>0.60</td>
<td>53 in·lb</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Starter Motor Mounting Bolts</td>
<td>9.8</td>
<td>1.0</td>
<td>87 in·lb</td>
<td>L</td>
</tr>
<tr>
<td>6</td>
<td>Starter Motor Terminal Locknut</td>
<td>11</td>
<td>1.1</td>
<td>97 in·lb</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Starter Motor Through Bolts</td>
<td>4.9</td>
<td>0.50</td>
<td>43 in·lb</td>
<td></td>
</tr>
</tbody>
</table>

G: Apply grease.
L: Apply a non-permanent locking agent.
R: Replacement Parts
Exploded View

<table>
<thead>
<tr>
<th>No.</th>
<th>Fastener</th>
<th>Torque (N·m)</th>
<th>Torque (kgf·m)</th>
<th>Torque (ft·lb)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alternator Cover Bolts</td>
<td>9.8</td>
<td>1.0</td>
<td>87 in·lb</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Alternator Lead Holding Plate Bolt</td>
<td>9.8</td>
<td>1.0</td>
<td>87 in·lb</td>
<td>L</td>
</tr>
<tr>
<td>3</td>
<td>Alternator Rotor Bolt</td>
<td>155</td>
<td>15.8</td>
<td>114</td>
<td>MO</td>
</tr>
<tr>
<td>4</td>
<td>Crankshaft Sensor Bolts</td>
<td>6.0</td>
<td>0.60</td>
<td>53 in·lb</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Neutral Switch</td>
<td>15</td>
<td>1.5</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Oil Pressure Switch</td>
<td>15</td>
<td>1.5</td>
<td>11</td>
<td>SS</td>
</tr>
<tr>
<td>7</td>
<td>Oxygen Sensor</td>
<td>44.1</td>
<td>4.50</td>
<td>32.5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Regulator/Rectifier Bolts</td>
<td>8.8</td>
<td>0.90</td>
<td>78 in·lb</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Sidestand Switch Bolt</td>
<td>8.8</td>
<td>0.90</td>
<td>78 in·lb</td>
<td>L</td>
</tr>
<tr>
<td>10</td>
<td>Spark Plugs</td>
<td>15</td>
<td>1.5</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Speed Sensor Bolt</td>
<td>7.8</td>
<td>0.80</td>
<td>69 in·lb</td>
<td>L</td>
</tr>
<tr>
<td>12</td>
<td>Starter Motor Clutch Bolts</td>
<td>34</td>
<td>3.5</td>
<td>25</td>
<td>L</td>
</tr>
<tr>
<td>13</td>
<td>Stator Coil Bolts</td>
<td>12</td>
<td>1.2</td>
<td>106 in·lb</td>
<td>L</td>
</tr>
<tr>
<td>14</td>
<td>Timing Rotor Bolt</td>
<td>40</td>
<td>4.1</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Water Temperature Sensor</td>
<td>12</td>
<td>1.2</td>
<td>106 in·lb</td>
<td></td>
</tr>
</tbody>
</table>

L: Apply a non-permanent locking agent.
M: Apply molybdenum disulfide grease.
MO: Apply molybdenum disulfide oil solution.
(Mixture of the engine oil and molybdenum disulfide grease in a weight ratio 10 : 1)
R: Replacement Parts
SS: Apply silicone sealant.
16-10 ELECTRICAL SYSTEM

Specifications

<table>
<thead>
<tr>
<th>Item</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Sealed Battery</td>
</tr>
<tr>
<td>Model Name</td>
<td>YTX12-BS</td>
</tr>
<tr>
<td>Capacity</td>
<td>12 V 10 Ah</td>
</tr>
<tr>
<td>Voltage</td>
<td>12.8 V or more</td>
</tr>
<tr>
<td>Charging System</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Three-phase AC</td>
</tr>
<tr>
<td>Alternator Output Voltage</td>
<td>42 V or more at 4 000 r/min (rpm)</td>
</tr>
<tr>
<td>Stator Coil Resistance</td>
<td>0.18 ~ 0.27 Ω</td>
</tr>
<tr>
<td>Charging Voltage</td>
<td>14.2 ~ 15.2 V</td>
</tr>
<tr>
<td>(Regulator/Rectifier Output Voltage)</td>
<td></td>
</tr>
<tr>
<td>Ignition System</td>
<td></td>
</tr>
<tr>
<td>Crankshaft Sensor Resistance</td>
<td>376 ~ 564 Ω</td>
</tr>
<tr>
<td>Crankshaft Sensor Peak Voltage</td>
<td>1.9 V or more</td>
</tr>
<tr>
<td>Stick Coil:</td>
<td></td>
</tr>
<tr>
<td>Primary Winding Resistance</td>
<td>1.1 ~ 1.5 Ω</td>
</tr>
<tr>
<td>Secondary Winding Resistance</td>
<td>10.8 ~ 16.2 kΩ</td>
</tr>
<tr>
<td>Primary Peak Voltage</td>
<td>88 V or more</td>
</tr>
<tr>
<td>Spark Plug:</td>
<td></td>
</tr>
<tr>
<td>Spark Plug Gap</td>
<td>0.8 ~ 0.9 mm (0.03 ~ 0.04 in.)</td>
</tr>
<tr>
<td>Electric Starter System</td>
<td></td>
</tr>
<tr>
<td>Starter Motor:</td>
<td></td>
</tr>
<tr>
<td>Brush Length</td>
<td>12 mm (0.47 in.) (Service limit: 6.0 mm, 0.24 in.)</td>
</tr>
<tr>
<td>Commutator Diameter</td>
<td>28 mm (1.10 in.) (Service limit: 27 mm, 1.06 in.)</td>
</tr>
<tr>
<td>Air Switching Valve</td>
<td></td>
</tr>
<tr>
<td>Resistance</td>
<td>18 ~ 22 Ω at 20°C (68°F)</td>
</tr>
<tr>
<td>Switch and Sensor</td>
<td></td>
</tr>
<tr>
<td>Rear Brake Light Switch Timing</td>
<td>ON after about 10 mm (0.39 in.) pedal travel</td>
</tr>
<tr>
<td>Engine Oil Pressure Switch Connections</td>
<td>When engine is stopped: ON</td>
</tr>
<tr>
<td>Water Temperature Sensor Resistance</td>
<td>When engine is running: OFF</td>
</tr>
</tbody>
</table>

http://mototh.com
Special Tools and Sealants

Hand Tester:
57001-1394

Grip:
57001-1591

Flywheel Puller Assembly, M38 × 1.5/M35 × 1.5:
57001-1405

Flywheel & Pulley Holder:
57001-1605

Peak Voltage Adapter:
57001-1415

Rotor Holder:
57001-1658

Lead Wire - Peak Voltage Adapter:
57001-1449

Kawasaki Bond (Silicone Sealant):
56019-120

Needle Adapter Set:
57001-1457

Kawasaki Bond (Silicone Sealant):
92104-0004

http://mototh.com
16-12 ELECTRICAL SYSTEM

Parts Location

1. Air Switching Valve
2. Alternator
3. Battery 12 V 10 Ah
4. Crankshaft Sensor
5. ECU (Electric Control Unit)
6. Fan Motor
7. Front Brake Light Switch
8. Fuse Box with ECU Main Fuse
9. Ignition Switch
10. Meter Unit
11. Neutral Switch
12. Oil Pressure Switch
13. Rear Brake Light Switch
14. Regulator/Rectifier
15. Relay Box
16. Sidestand Switch
17. Speed Sensor
18. Starter Lockout Switch
19. Starter Motor
20. Starter Relay with Main Fuse
21. Stick Coils
22. Turn Signal Relay
23. Water Temperature Sensor
24. Oxygen Sensor (Europe Models)
Parts Location

Dummy Page
16-14 ELECTRICAL SYSTEM

Wiring Diagram

LEFT SWITCH HOUSING CONNECTIONS

<table>
<thead>
<tr>
<th>Horn Button</th>
<th>Hazard Button</th>
<th>Turn Signal Switch</th>
<th>Side Lamp Switch</th>
<th>Headlight Switch</th>
<th>Passing Button</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://mototh.com
Precautions

- Do not reverse the battery cable connections. This will burn out the diodes on the electrical parts.
- Always check battery condition before condemning other parts of an electrical system. A fully charged battery is a must for conducting accurate electrical system tests.
- The electrical parts should never be struck sharply, as with a hammer, or allowed to fall on a hard surface. Such a shock to the parts can damage them.
- To prevent damage to electrical parts, do not disconnect the battery cables or any other electrical connections when the ignition switch is on, or while the engine is running.
- Because of the large amount of current, never keep the starter button pushed when the starter motor will not turn over, or the current may burn out the starter motor windings.
- Do not use a meter illumination bulb rated for other than voltage or wattage specified in the wiring diagram, as the meter or gauge panel could be warped by excessive heat radiated from the bulb.
- Take care not to short the cables that are directly connected to the battery positive (+) terminal to the chassis ground.
- Troubles may involve one or in some cases all items. Never replace a defective part without determining what CAUSED the failure. If the failure was caused by some other item or items, they must be repaired or replaced, or the new replacement will soon fail again.
- Make sure all connectors in the circuit are clean and tight, and examine wires for signs of burning, fraying, etc. Poor wires and bad connections will affect electrical system operation.
- Measure coil and winding resistance when the part is cold (at room temperature).

Color Codes:

- BK: Black
- BL: Blue
- BR: Brown
- CH: Chocolate
- DG: Dark Green
- G: Green
- GY: Gray
- LB: Light Blue
- LG: Light Green
- O: Orange
- P: Pink
- PU: Purple
- R: Red
- W: White
- Y: Yellow

Electrical Connectors
Female Connectors [A]
Precautions

Male Connectors [B]
16-18 ELECTRICAL SYSTEM

Electrical Wiring

Wiring Inspection

• Visually inspect the wiring for signs of burning, fraying, etc.
• If any wiring is poor, replace the damaged wiring.
• Pull each connector [A] apart and inspect it for corrosion, dirt, and damage.
• If the connector is corroded or dirty, clean it carefully. If it is damaged, replace it.
• Check the wiring for continuity.
 ○ Use the wiring diagram to find the ends of the lead which is suspected of being a problem.
 ○ Connect the hand tester between the ends of the leads.

Special Tool - Hand Tester: 57001-1394

○ Set the tester to the × 1 Ω range, and read the tester.

★ If the tester does not read 0 Ω, the lead is defective. Replace the lead or the wiring harness [B] if necessary.
Battery

Battery Removal

- Remove:
 - Seat (see Seat Removal in the Frame chapter)
 - Disconnect the negative (−) cable [A].
 - Slide out the positive (+) terminal cap [B] and then disconnect the positive (+) cable.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be sure to disconnect the negative (−) cable first.</td>
</tr>
</tbody>
</table>

- Remove the battery.

Battery Installation

- Put the battery into the rear fender front.
- Apply a light coat of grease on the terminals to prevent corrosion.
- Install the positive (+) cable [A] first.
- Cover the positive (+) terminal with the cap [B].
- Install the negative (−) cable [C].

Battery Activation

Electrolyte Filling

- Make sure that the model name [A] of the electrolyte container matches the model name [B] of the battery. These names must be the same.

Battery Model Name for ER650A: YTX12-BS

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be sure to use the electrolyte container with the same model name as the battery since the electrolyte volume and specific gravity vary with the battery type. This is to prevent overfilling of the electrolyte, shorting the battery life, and deterioration of the battery performance.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not remove the aluminum sealing sheet [A] from the filler ports [B] until just prior to use. Be sure to use the dedicated electrolyte container for correct electrolyte volume.</td>
</tr>
</tbody>
</table>

- Place the battery on a level surface.
- Check to see that the sealing sheet has no peeling, tears, or holes in it.
- Remove the sealing sheet.

NOTE

○ The battery is vacuum sealed. If the sealing sheet has leaked air into the battery, it may require a longer initial charge.
16-20 ELECTRICAL SYSTEM

Battery

- Remove the electrolyte container from the vinyl bag.
- Detach the strip of caps [A] from the container and set aside, these will be used later to seal the battery.

NOTE
- Do not pierce or otherwise open the sealed cells [B] of the electrolyte container. Do not attempt to separate individual cells.

- Place the electrolyte container upside down with the six sealed cells into the filler ports of the battery. Hold the container level, push down to break the seals of all six cells. You will see air bubbles rising into each cell as the ports fill.

NOTE
- Do not tilt the electrolyte container

- Check the electrolyte flow.
 - If no air bubbles [A] are coming up from the filler ports, or if the container cells have not emptied completely, tap the container [B] a few times.

- Keep the container in place for 20 minutes or more. Don’t remove the container from the battery until it’s empty, the battery requires all the electrolyte from the container for proper operation.

CAUTION

| Removal of the container before it is completely empty can shorten the service life of the battery. Do not remove the electrolyte container until it is completely empty and 20 minutes have elapsed. |

- Gently remove the container from the battery.
- Let the battery sit for 30 minutes prior to charging to allow the electrolyte to permeate into the plates for optimum performance.

NOTE
- Charging the battery immediately after filling can shorten service life. Let the battery sit for at least 30 minutes after filling.
Battery

Initial Charge
● Place the strip [A] of caps loosely over the filler ports.
● Newly activated sealed batteries require an initial charge.

Standard Charge: 1.2 A × 5 – 10 hours
★ If using a recommended battery charger, follow the charger's instructions for newly activated sealed battery.

Kawasaki-recommended chargers
Optimate III
Yuasa 1.5 Amp Automatic Charger
Battery Mate 150-9
★ If the above chargers are not available, use equivalent one.

NOTE
○ Charging rates will vary depending on how long the battery has been stored, temperature, and the type of charger used. Let battery sit 30 minutes after initial charge, then check voltage using a voltmeter. If it is not at least 12.8 V, repeat charging cycle.

● After charging is completed, press down firmly with both hands to seat the strip of caps [A] into the battery (don’t pound or hammer.). When properly installed, the strip of the caps will be level with the top of the battery.

CAUTION
Once the strip of the caps [A] is installed onto the battery, never remove the caps, nor add water or electrolyte to the battery.

NOTE
○ To ensure maximum battery life and customer satisfaction, it is recommended the battery be load tested at three times its amp-hour rating for 15 seconds. Re-check voltage and if less than 12.8 V repeat the charging cycle and load test. If still below 12.8 V the battery is defective.
16-22 ELECTRICAL SYSTEM

Battery

Precautions
1) No need of topping-up
 No topping-up is necessary in this battery until it ends its life under normal use. *Forcibly prying off the seal cap to add water is very dangerous. Never do that.*

2) Refreshing charge.
 If an engine will not start, a horn sounds weak, or lamps are dim, it indicates the battery has been discharged. Give refresh charge for 5 to 10 hours with charge current shown in the specification (see Specifications).
 When a fast charge is inevitably required, do it following precisely the maximum charge current and time conditions indicated on the battery.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>This battery is designed to sustain no unusual deterioration if refresh-charged according to the method specified above. However, the battery’s performance may be reduced noticeably if charged under conditions other than given above. Never remove the seal cap during refresh charge.</td>
</tr>
<tr>
<td>If by chance an excessive amount of gas is generated due to overcharging, the relief valve releases the gas to keep the battery normal.</td>
</tr>
</tbody>
</table>

3) When you do not use the motorcycle for months.
 Give a refresh charge before you store the motorcycle and store it with the negative cable removed. Give a refresh charge **once a month** during storage.

4) Battery life.
 If the battery will not start the engine even after several refresh charges, the battery has exceeded its useful life. Replace it (Provided, however, the vehicle’s starting system has no problem).

<table>
<thead>
<tr>
<th>WARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep the battery away from sparks and open flames during charging, since the battery gives off an explosive gas mixture of hydrogen and oxygen. When using a battery charger, connect the battery to the charger before turning on the charger.</td>
</tr>
<tr>
<td>This procedure prevents sparks at the battery terminals which could ignite any battery gases.</td>
</tr>
<tr>
<td>No fire should be drawn near the battery, or no terminals should have the tightening loosened.</td>
</tr>
<tr>
<td>The electrolyte contains sulfuric acid. Be careful not to have it touch your skin or eyes. If touched, wash it off with liberal amount of water. Get medical attention if severe.</td>
</tr>
</tbody>
</table>

Interchange
A sealed battery can fully display its performance only when combined with a proper vehicle electric system. Therefore, replace a sealed battery only on a motorcycle which was originally equipped with a sealed battery.
Be careful, if a sealed battery is installed on a motorcycle which had an ordinary battery as original equipment, the sealed battery’s life will be shortened.

http://mototh.com
Battery Charging Condition Inspection

- Battery charging condition can be checked by measuring battery terminal voltage with a digital voltmeter [A].
- Remove:
 - Seat (see Seat Removal in the Frame chapter)
 - Battery Cable Cap (see Battery Removal)
- Disconnect the battery terminals.

CAUTION

Be sure to disconnect the negative (−) cable first.

- Measure the battery terminal voltage.

NOTE

- Measure with a digital voltmeter which can be read one decimal place voltage.

If the reading is 12.8 V or more, no refresh charge is required, however, if the read is below the specified, refresh charge is required.

<table>
<thead>
<tr>
<th>Battery Terminal Voltage</th>
<th>Standard: 12.8 V or more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Voltage (V) [A]</td>
<td>Battery Charge Rate (%) [B]</td>
</tr>
<tr>
<td></td>
<td>Good [C]</td>
</tr>
<tr>
<td></td>
<td>Refresh charge is required [D]</td>
</tr>
</tbody>
</table>

Refreshing Charge

- Remove the battery [A] (see Battery Removal).
- Do refresh charge by following method according to the battery terminal voltage.

WARNING

This battery is sealed type. Never remove sealing cap [B] even at charging. Never add water. Charge with current and time as stated below.
16-24 ELECTRICAL SYSTEM

Battery

Terminal Voltage: 11.5 – less than 12.8 V
Standard Charge 1.2 A x 5 – 10 h (see following chart)
Quick Charge 5 A x 1 h

CAUTION
If possible, do not quick charge. If quick charge is done unavoidably, do standard charge later on.

Terminal Voltage: less than 11.5 V
Charging Method 1.2 A x 20 h

NOTE
○ Increase the charging voltage to a maximum voltage of 25 V if the battery will not accept current initially. Charge for no more than 5 minutes at the increased voltage then check if the battery is drawing current. If the battery will accept current decrease the voltage and charge by the standard charging method described on the battery case. If the battery will not accept current after 5 minutes, replace the battery.

Battery [A]
Battery Charger [B]
Standard Value [C]
Current starts to flow [D]

Determine the battery condition after refresh charge.
Determine the condition of the battery left for 30 minutes after completion of the charge by measuring the terminal voltage according to the table below.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.8 V or higher</td>
<td>Good</td>
</tr>
<tr>
<td>12.0 – lower than 12.8 V</td>
<td>Charge insufficient → Recharge</td>
</tr>
<tr>
<td>lower than 12.0 V</td>
<td>Unserviceable → Replace</td>
</tr>
</tbody>
</table>

http://mototh.com
Charging System

Alternator Cover Removal
- Remove:
 - Lower Fairing (see Lower Fairing Removal in the Frame chapter)
 - Alternator Lead Connector [A]

 - Place a suitable container under the alternator cover [A], and remove the cover bolts [B].
 - Pull the alternator cover outside.

Alternator Cover Installation
- Apply silicone sealant to the alternator lead grommet and crankcase halves mating surface [A] on the front and rear sides of the cover mount.

 Sealant - Kawasaki Bond (Silicone Sealant): 92104-0004

- Check that dowel pins [B] are in place on the crankcase.
- Install a new gasket and the alternator cover.
- Tighten:

 Torque - Alternator Cover Bolts: 9.8 N·m (1.0 kgf·m, 87 in·lb)

Stator Coil Removal
- Remove:
 - Alternator Cover (see Alternator Cover Removal)
 - Holding Plate Bolt [A] and Plate
 - Alternator Lead Grommet [B]
 - Stator Coil Bolts [C]

- Remove the stator coil [D] from the alternator cover.
16-26 ELECTRICAL SYSTEM

Charging System

Stator Coil Installation

- Apply a non-permanent locking agent to the threads of the stator coil bolts and tighten them.
 Torque - Stator Coil Bolts: 12 N·m (1.2 kgf·m, 106 in·lb)
- Secure the alternator lead with a holding plate, and tighten the bolt.
 ○ Apply a non-permanent locking agent to the threads of the holding plate bolt.
 Torque - Alternator Lead Holding Plate Bolt: 9.8 N·m (1.0 kgf·m, 87 in·lb)
- Apply silicone sealant to the circumference of the alternator lead grommet, and fit the grommet into the notch of the cover securely.
 Sealant - Kawasaki Bond (Silicone Sealant): 92104-0004
- Install the alternator cover (see Alternator Cover Installation).

Alternator Rotor Removal

- Remove the alternator cover (see Alternator Cover Removal).
- Remove the starter idle gear, torque limiter and shafts.
- Wipe oil off the outer circumference of the rotor.
- Hold the alternator rotor steady with the rotor holder [A], and remove the rotor bolt [B] and washer.
 Special Tools - Grip: 57001-1591
 Rotor Holder: 57001-1658
- Using the flywheel puller [A], remove the alternator rotor from the crankshaft.
 Special Tool - Flywheel Puller Assembly, M38 × 1.5/M35 × 1.5: 57001-1405

| CAUTION |
| Do not attempt to strike the alternator rotor itself. Striking the rotor can cause the magnets to lose their magnetism. |

Alternator Rotor Installation

- Using a cleaning fluid, clean off any oil or dirt on the following portions and dry them with a clean cloth.
 Crankshaft Tapered Portion [A]
 Alternator Rotor Tapered Portion [B]
- Apply a thin coat of molybdenum disulfide grease to the crankshaft [C].
Charging System

- Install the starter gear [A] and washer [B].
- Again, clean the crankshaft tapered portion [C] and dry there.

- Install the alternator rotor [A] while turning [B] it counterclockwise.

- Install the washer [A].

NOTE

- Confirm the alternator rotor fit or not to the crankshaft before tightening it with specified torque.
- Apply molybdenum disulfide oil solution to the threads and seating surface of the rotor bolt.
- Install the rotor bolt [B] and tighten it with 70 N·m (7.0 kgf·m, 52 ft·lb) of torque.
- Remove the rotor bolt and washer.
- Check the tightening torque with flywheel puller.

 ★If the rotor is not pulled out with 20 N·m (2.0 kgf·m, 15 ft·lb) of drawing torque, it is installed correctly.

 ★If the rotor is pulled out with under 20 N·m (2.0 kgf·m, 15 ft·lb) of drawing torque, clean off any oil dirt or flaw of the crankshaft and rotor tapered portion, and dry them with a clean cloth. Then, confirm that it is not pulled out with above torque.

- Tighten the alternator rotor bolt while holding the alternator rotor steady with the rotor holder.

Special Tools - Grip: 57001-1591
Rotor Holder: 57001-1658

Torque - Alternator Rotor Bolt: 155 N·m (15.8 kgf·m, 114 ft·lb)
16-28 ELECTRICAL SYSTEM

Charging System

- Apply a thin coat of molybdenum disulfide grease to the shafts [A], and install them.
- Install the torque limiter [B] and starter idle gear [C].
- Install the alternator cover (see Alternator Cover Installation).

Alternator Inspection

There are three types of alternator failures: short, open (wire burned out), or loss in rotor magnetism. A short or open in one of the coil wires will result in either a low output, or no output at all. A loss in rotor magnetism, which may be caused by dropping or hitting the alternator, by leaving it near an electromagnetic field, or just by aging, will result in low output.

- To check the alternator output voltage, do the following procedures.
 ○ Turn off the ignition switch.
 ○ Disconnect the alternator lead connector [A].
 ○ Connect the hand tester as shown in the table 1.
 ○ Start the engine.
 ○ Run it at the rpm given in the table 1.
 ○ Note the voltage readings (total 3 measurements).

Table 1 Alternator Output Voltage

<table>
<thead>
<tr>
<th>Connections</th>
<th>Tester Range</th>
<th>Reading at 4,000 rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tester (+) to</td>
<td>250 V AC</td>
<td>42 V or more</td>
</tr>
<tr>
<td>Tester (–) to</td>
<td>One Black lead</td>
<td>Another Black lead</td>
</tr>
</tbody>
</table>

★ If the output voltage shows the value in the table, the alternator operates properly.
★ If the output voltage shows a much higher than the value in the table, the regulator/rectifier is damaged. A much lower reading than that given in the table indicates that the alternator is defective.

- Check the stator coil resistance as follows.
 ○ Stop the engine.
 ○ Connect the hand tester as shown in the table 2.
 ○ Note the readings (total 3 measurement).

Table 2 Stator Coil Resistance

<table>
<thead>
<tr>
<th>Connections</th>
<th>Tester Range</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tester (+) to</td>
<td>× 1 Ω</td>
<td>0.18 – 0.27 Ω</td>
</tr>
<tr>
<td>Tester (–) to</td>
<td>One Black lead</td>
<td>Another Black lead</td>
</tr>
</tbody>
</table>
ELECTRICAL SYSTEM 16-29

Charging System

- If there is more resistance than shown in the table, or no hand tester reading (infinity) for any two leads, the stator has an open lead and must be replaced. Much less than this resistance means the stator is shorted, and must be replaced.
- Using the highest resistance range of the hand tester, measure the resistance between each of the black leads and chassis ground.
- Any hand tester reading less than infinity (\(\infty\)) indicates a short, necessitating stator replacement.
- If the stator coils have normal resistance, but the voltage check showed the alternator to be defective, then the rotor magnets have probably weakened, and the rotor must be replaced.

Special Tool - Hand Tester: 57001-1394

Regulator/Rectifier Inspection

- Remove:
 - Bolts [A]

 - Disconnect the connector [A].
 - Remove the regulator/rectifier [B].

Rectifier Circuit Check

- Check conductivity of the following pair of terminals.

Rectifier Circuit Inspection

<table>
<thead>
<tr>
<th>Tester connection</th>
<th>W/BL-BK1, W/BL-BK2, W/BL-BK3</th>
<th>BK/Y-BK1, BK/Y-BK2, BK/Y-BK3</th>
</tr>
</thead>
</table>

- The resistance should be low in one direction and more than ten times as much in the other direction. If any two leads are low or high in both directions, the rectifier is defective and the regulator/rectifier must be replaced.

NOTE

- The actual meter reading varies with the meter used and the individual rectifier, but, generally speaking the lower reading should be from zero to one half the scale.
16-30 ELECTRICAL SYSTEM

Charging System

Regulator Circuit Check
To test the regulator out of circuit, use three 12 V batteries
and a test light (12 V 3 – 6 W bulb in a socket with leads).

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>The test light works as an indicator and also a current limiter to protect the regulator/rectifier from excessive current. Do not use an ammeter instead of a test light.</td>
</tr>
</tbody>
</table>

- Check to be sure the rectifier circuit is normal before continuing.

- Do the 1st step regulator circuit test.
 - Connect the test light and the 12 V battery to the regulator/rectifier as shown.
 - Check the BK1, BK2 and BK3 terminal respectively.
 - If the test light turns on, the regulator/rectifier is defective. Replace it.
 - If the test light does not turn on, continue the test.

- Do the 2nd step regulator circuit test.
 - Connect the test light and the 12 V battery in the same manner as specified in the “Regulator Circuit Test-1st Step”.
 - Apply 12 V to the voltage BR terminal.
 - Check the BK1, BK2 and BK3 terminal respectively.
 - If the test light turns on, the regulator/rectifier is defective. Replace it.
 - If the test light does not turn on, continue the test.

- Do the 3rd step regulator circuit test.
 - Connect the test light and the 12 V battery in the same manner as specified in the “Regulator Circuit Test-1st Step”.
 - Momentarily apply 24 V to the voltage BR terminal by adding a 12 V battery.
 - Check the BK1, BK2 and BK3 terminals respectively.

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not apply more than 24 V. If more than 24 V is applied, the regulator/rectifier may be damaged. Do not apply 24 V more than a few seconds. If 24 V is applied for more than a few seconds, the regulator/rectifier may be damaged.</td>
</tr>
</tbody>
</table>

- If the test light did not light when the 24 V was applied momentarily to the voltage monitoring terminal, the regulator/rectifier is defective. Replace it.
- If the regulator/rectifier passes all of the tests described, it may still be defective. If the charging system still does not work properly after checking all of the components and the battery, test the regulator/rectifier by replacing it with a known good unit.

http://mototh.com
Charging System

Charging Voltage Inspection

- Check the battery condition (see Charging Condition Inspection).
- Warm up the engine to obtain actual alternator operating conditions.
- Remove the seat (see Seat Removal in the Frame chapter).
- Check that the ignition switch is turned off, and connect the hand tester [A] to the battery terminals [B].

Special Tool - Hand Tester: 57001-1394

- Start the engine, and note the voltage readings at various engine speeds with the headlight turned on and then turned off (To turn off the headlight, disconnect the headlight connector on the headlight unit.). The readings should show nearly battery voltage when the engine speed is low, and, as the engine speed rises, the readings should also rise. But they must be kept under the specified voltage.

<table>
<thead>
<tr>
<th>Tester Range</th>
<th>Connections</th>
<th>Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 V DC</td>
<td>Tester (+) to Battery (+)</td>
<td>14.2 – 15.2 V</td>
</tr>
<tr>
<td></td>
<td>Tester (–) to Battery (–)</td>
<td></td>
</tr>
</tbody>
</table>

- Turn off the ignition switch to stop the engine, and disconnect the hand tester.

★ If the charging voltage is kept between the values given in the table, the charging system is considered to be working normally.
★ If the charging voltage is much higher than the values specified in the table, the regulator/rectifier is defective or the regulator/rectifier leads are loose or open.
★ If the charging voltage does not rise as the engine speed increases, then the regulator/rectifier is defective or the alternator output is insufficient for the loads. Check the alternator and regulator/rectifier to determine which part is defective.
1. Ignition Switch
2. Alternator
3. Regulator/Rectifier
4. Water-proof Joint C
5. Main Fuse 30 A
6. Battery 12 V 10 Ah
7. Load
Starter Motor Clutch

*S Starter Motor Clutch Removal/Installation
 - Refer to the Alternator Rotor Removal/Installation.

*S Starter Motor Clutch Inspection
 - Remove:
 - Alternator Cover (see Alternator Cover Removal)
 - Starter Idle Gear and Torque Limiter Shafts
 - Turn the starter motor clutch gear [A] by hand. The starter motor clutch gear should turn clockwise [B] freely, but should not turn counterclockwise [C].
 - If the starter motor clutch does not operate as it should or if it makes noise, go to the next step.
 - Disassemble the starter motor clutch, and visually inspect the clutch parts.
 - If there is any worn or damaged part, replace it.

 NOTE
 ○ Examine the starter motor clutch gear as well. Replace it if it worn or damaged.

*S Starter Motor Clutch Disassembly
 - Remove:
 - Alternator Rotor (see Alternator Rotor Removal)
 - Starter Motor Clutch Bolts [A]
 - Starter Motor Clutch [A]

*S Starter Motor Clutch Assembly
 - Apply a non-permanent locking agent to the threads of the starter motor clutch bolts and tighten them.
 - **Torque - Starter Motor Clutch Bolts:** 34 N·m (3.5 kgf·m, 25 ft·lb)
16-34 ELECTRICAL SYSTEM

Ignition System

WARNING

The ignition system produces extremely high voltage. Do not touch the spark plugs or stick coils while the engine is running, or you could receive a severe electrical shock.

CAUTION

Do not disconnect the battery cables or any other electrical connections when the ignition switch is on, or while the engine is running. This is to prevent ECU (Electric Control Unit) damage. Do not install the battery backwards. The negative side is grounded. This is to prevent damage to the ECU.

Crankshaft Sensor Removal

- Remove:
 - Lower Fairing (see Lower Fairing Removal in the Frame chapter)
 - Right Frame Cover (see Frame Cover Removal in the Frame chapter)
 - Crankshaft Sensor Lead Connector [A]

- Remove:
 - Rubber Boot (Slide Out) [A]
 - Oil Pressure Switch Lead Terminal [B]
 - Clutch Cover (see Clutch Cover Removal in the Clutch chapter)

- Remove:
 - Bolts [A]
 - Crankshaft Sensor [B]
 - Pull out the grommet [C].
Ignition System

Crankshaft Sensor Installation
- Route the crankshaft sensor lead correctly (see Cable, Wire, and Hose Routing section in the Appendix chapter).
- Tighten:
 Torque - Crankshaft Sensor Bolts: 6.0 N·m (0.60 kgf·m, 53 in·lb)
- Apply silicone sealant [A] to the crankshaft sensor lead grommet.
 Sealant - Kawasaki Bond (Silicone Sealant): 92104-0004
- Install the removed parts (see appropriate chapters).

Crankshaft Sensor Inspection
- Remove:
 - Right Frame Cover (see Frame Cover Removal in the Frame chapter)
 - Crankshaft Sensor Lead Connector [A]
- Set the hand tester to the × 100 Ω range and connect (+) lead to the black lead and (–) lead to the yellow lead in the connector.
 Special Tool - Hand Tester: 57001-1394
- If there is more resistance than the specified value, the coil has an open lead and must be replaced. Much less than this resistance means the coil is shorted, and must be replaced.
 Crankshaft Sensor Resistance: 376 – 564 Ω
- Using the highest resistance range of the tester, measure the resistance between the crankshaft sensor leads and chassis ground.
- Any tester reading less than infinity (∞) indicates a short, necessitating replacement of the crankshaft sensor assembly.

Crankshaft Sensor Peak Voltage Inspection

NOTE
- Be sure the battery is fully charged.
- Using the peak voltage adapter [A] is a more reliable way to determine the condition of the crankshaft sensor than crankshaft sensor internal resistance measurements.
- Remove:
 - Crankshaft Sensor Lead Connector (see Crankshaft Sensor Removal)
- Set the hand tester [B] to the × DC 10 V range, and connect it peak voltage adapter.
- Connect the black lead of the adapter to yellow lead and red lead to black lead in the crankshaft sensor connector.
- Turn the ignition switch and engine stop switch ON.
16-36 ELECTRICAL SYSTEM

Ignition System

- Pushing the starter button, turn the engine 4 ~ 5 seconds with the transmission gear in neutral to measure the crankshaft sensor peak voltage.
- Repeat the measurement 5 or more times.

Crankshaft Sensor Peak Voltage

Standard: 1.9 V or more

Special Tools - Hand Tester: 57001-1394
Peak Voltage Adapter: 57001-1415
Type: KEK-54-9-B

If the tester reading is not specified one, check the crankshaft sensor.

Timing Rotor Removal

- Remove:
 - Clutch Cover (see Clutch Cover Removal in the Clutch chapter)
 - Crankshaft Sensor (see Crankshaft Sensor Removal)
- Remove the timing rotor [A].
 - Holding the timing rotor with the flywheel & pulley holder [B] and unscrew the rotor bolt [C].

Special Tool - Flywheel & Pulley Holder: 57001-1605

Timing Rotor Installation

- Fit the rotor to the crankshaft.
- Tighten the rotor bolt.
 - Torque - Timing Rotor Bolt: 40 N-m (4.1 kgf-m, 30 ft-lb)
- Install the removed parts (see appropriate chapters).

Stick Coil (Ignition Coil together with Spark Plug Cap) Removal

- Remove the air cleaner housing (see Air Cleaner Housing Removal in the Fuel System (DFI) chapter).
- Disconnect the stick coil connectors [A].
- Pull the stick coils [B] off the spark plugs.

CAUTION

Do not pry the connector part of the coil while removing the coil.

Stick Coil (Ignition Coil together with Spark Plug Cap) Installation

- Insert the coil as shown being careful of the coil heads [A] direction.
- Connect the connectors.

CAUTION

Do not tap the coil head while installing the coil.

- Run the hoses and harness correctly (see Cable, Wire, and Hose Routing section in the Appendix chapter).
- Install the removed parts (see appropriate chapters).
Ignition System

Stick Coil (Ignition Coil together with Spark Plug Cap) Inspection

- Remove the stick coils (see Stick Coil (Ignition Coil together with Spark Plug Cap) Removal).
- Measure the primary winding resistance [A] as follows.
 ○ Connect the hand tester between the coil terminals.
 ○ Set the tester to the × 1 Ω range, and read the tester.
- Measure the secondary winding resistance [B] as follows.
 ○ Connect the tester between the plug terminal and (−) coil terminal.
 ○ Set the tester to the × 1 kΩ range and read the tester.

Ignition Coil Winding Resistance
Primary Windings: 1.1 – 1.5 Ω
Secondary Windings: 10.8 – 16.2 kΩ
★ If the tester does not read as specified, replace the coil.

Stick Coil Primary Peak Voltage

NOTE
○ Be sure the battery is fully charged.

- Remove the stick coils (see Stick Coil (Ignition Coil together with Spark Plug Cap) Removal), but do not remove the spark plugs.
- Measure the primary peak voltage as follows.
 ○ Install the new spark plug [A] into each stick coil [B], and ground them onto the engine.
 ○ Connect the peak voltage adapter [C] into the hand tester [D] which is set to the × DC 250 V range.
 ○ Connect the adapter to the lead wire-peak voltage adapter [E] which is connected between the stick coil connector and stick coil.
 ECU [F]
 Battery [G]

Special Tools - Hand Tester: 57001-1394
 Peak Voltage Adapter: 57001-1415
 Type: KEK-54-9-B
 Lead Wire-Peak Voltage Adapter: 57001-1449

Primary Lead Connection
 Adapter (R, +) to lead wire-peak voltage adapter (W)
 Adapter (BK, −) to lead wire-peak voltage adapter (R)
16-38 ELECTRICAL SYSTEM

Ignition System

WARNING

To avoid extremely high voltage shocks, do not touch the spark plugs or tester connections.

- Turn the ignition switch and the engine stop switch ON.
- Pushing the starter button, turn the engine 4 ~ 5 seconds with the transmission in neutral to measure the primary peak voltage.
- Repeat the measurements 5 times for one stick coil.

Stick Coil Primary Peak Voltage

| Standard | 88 V or more |

- Repeat the test for the other stick coil.
- If the reading is less than the specified value, check the following.
 - Stick Coils (see Stick Coil (Ignition Coil together with Spark Plug Cap) Inspection)
 - Crankshaft Sensor (see Crankshaft Sensor Inspection)
 - ECU (see ECU Power Supply Inspection in the Fuel System (DFI) chapter)

Spark Plug Removal

- Refer to the Spark Plug Replacement in the Periodic Maintenance chapter.

Spark Plug Installation

- Refer to the Spark Plug Replacement in the Periodic Maintenance chapter.

Spark Plug Condition Inspection

- Refer to the Spark Plug Condition Inspection in the Periodic Maintenance chapter.
Ignition System

Interlock Operation Inspection

- Raise the rear wheel off the ground with stand.

1st Check

- Start the engine to the following conditions.

 Condition
 - Transmission Gear → 1st Position
 - Clutch Lever → Release
 - Sidestand → Down or Up

 ○ Turn the ignition switch ON and push the starter button.
 ○ Then the starter motor should not turn when the starter system circuit is normality.
 ★ If the engine is start, inspect the starter lockout switch, neutral switch and relay box.
 ★ If their parts are normality replace the ECU.

2nd Check

- Start the engine to the following conditions.

 Condition
 - Transmission Gear → 1st Position
 - Clutch Lever → Pulled in
 - Sidestand → Up

 ○ Turn the ignition switch ON and push the starter button.
 ○ Then the starter motor should turn when the starter system circuit is normality.
 ★ If the starter motor is not turn, inspect the starter lockout switch, neutral switch and relay box.
 ★ If their parts are normality replace the ECU.

3rd Check

- Inspect the engine for its secure stop after the following operations are completed.

- Run the engine to the following conditions.

 Condition
 - Transmission Gear → 1st Position
 - Clutch Lever → Pulled in
 - Sidestand → Up

 ● Set the sidestand on the ground, then the engine will stop.
 ★ If whichever may not be stopped, inspect the neutral switch, starter lockout switch, sidestand switch and relay box.
 ★ If their parts are normality, replace the ECU.
16-40 ELECTRICAL SYSTEM

Ignition System

IC Igniter Inspection
○The IC igniter is built in the ECU [A].
● Refer to the Interlock Operation Inspection, Ignition System Troubleshooting chart and Fuel System (DFI) chapter for ECU Power Supply Inspection.
Ignition System Troubleshooting

Faulty ignition (No spark)

Battery Inspection
- No good → Charge or replace battery.
- Good

Ignition system wiring and connector inspection
- No good → Repair or replace damaged part.
- Good

Spark plug inspection
- No good → Replace spark plug.
- Good

Stick coil winding resistance inspection
- No good → Replace stick coil.
- Good

Stick coil primary peak voltage inspection
- No good → Voltage is less than the specified value.
- Good

Stick coil is defective. Replace stick coil.

Voltage is zero or almost zero.

Inspect:
1. Adapter connection is incorrect, or adapter is defective.
2. Ignition switch and engine stop switch
3. Crankshaft sensor peak voltage

No good

Replace bad parts or inspect them with KAWASAKI Hand Tester.

Good

Inspect:
1. Lower resistance in a hand tester (Use KAWASAKI Hand Tester).

Replace bad parts.

ECU is defective. Replace ECU.
16-42 ELECTRICAL SYSTEM

Ignition System

Ignition System Circuit

1. Ignition Switch
2. Engine Stop Switch
3. Spark Plugs
4. Stick Coils
5. Water-proof Joint C
6. Speed Sensor
7. Subthrottle Sensor
8. Main Throttle Sensor
9. Water-proof Joint D
10. Vehicle-down Sensor
11. Water-proof Joint E
12. Water Temperature Sensor
13. Neutral Switch
14. Crankshaft Sensor
15. Oxygen Sensor
16. Meter Unit
17. Water-proof Joint A
18. Water-proof Joint B
19. Starter Lockout Switch
20. Oxygen Sensor Heater Fuse
21. ECU Fuse 15 A
22. Ignition Fuse 10 A
23. Fuse Box
24. ECU Main Relay
25. Relay Box
26. Main Fuse 30 A
27. Starter Relay
28. Battery 12 V 10 Ah
29. Frame Ground
30. Sidestand Switch
31. Joint Connector
32. ECU

http://mototh.com
Electric Starter System

Starter Motor Removal

CAUTION

Do not tap the starter motor shaft or body. Tapping the shaft or body could damage the motor.

- Remove the fuel tank (see Fuel Tank Removal in the Fuel System (DFI) chapter).
- Slide back the rubber cap [A].
- Remove the starter motor cable terminal nut [B].

- Remove the mounting bolts [A].
- Pull out the starter motor [B].

Starter Motor Installation

CAUTION

Do not tap the starter motor shaft or body. Tapping the shaft or body could damage the motor.

- When installing the starter motor, clean the starter motor legs [A] and crankcase [B] where the starter motor is grounded.

- Replace the O-ring [A] with a new one.
- Apply grease to the O-ring.
- Apply a non-permanent locking agent to the threads of the bolts and tighten the bolts.
 Torque - Starter Motor Mounting Bolts: 9.8 N·m (1.0 kgf·m, 87 in·lb)
- Install the starter motor cable.
- Tighten:
 Torque - Starter Motor Cable Terminal Nut: 6.0 N·m (0.60 kgf·m, 53 in·lb)

Starter Motor Disassembly

- Remove the starter motor (see Starter Motor Removal).
- Take off the starter motor through bolts [A] and remove the both end covers [B] and pull the armature out of the yoke [C].
16-44 ELECTRICAL SYSTEM

Electric Starter System

• Remove:
 Terminal Locknut and Washers
 O-ring
• Remove the brush plate assy [A] from the yoke [B].

• Remove the brush plate [A] from the plate cover [B].

NOTE
Do not remove the negative carbon brushes from the brush plate.

Starter Motor Assembly

• Install the brush plate [A] to the plate cover [B] as shown.
• Install the brush plate assy to the yoke.

• Clamp the springs [A] with the clips [B].
• Fit the armature [C] to the brush plate assy [D].
• Remove the clips.

• Install the new O-ring [A] as shown.
• Install:
 Washers [B] and Terminal Locknut [C]
• Tighten:
 Torque - Starter Motor Terminal Locknut: 11 N·m (1.1 kgf·m, 97 in·lb)
Electric Starter System

- Align the lines [A] on the yoke with the end cover lines [B].
- Tighten the through bolts.

 Torque - Starter Motor Through Bolts: 4.9 N·m (0.50 kgf·m, 43 in·lb)

Brush Inspection
- Measure the length of each brush [A].
- If any is worn down to the service limit, replace the brush plate assy [B] and the terminal bolt assy [C].

 Starter Motor Brush Length
 - **Standard:** 12 mm (0.47 in.)
 - **Service Limit:** 6.0 mm (0.24 in.)

Commutator Cleaning and Inspection
- Smooth the commutator surface [A] if necessary with fine emery cloth [B], and clean out the grooves.

- Measure the diameter [A] of the commutator [B].
- If the commutator diameter is less than the service limit, replace the starter motor with a new one.

 Commutator Diameter
 - **Standard:** 28 mm (1.10 in.)
 - **Service Limit:** 27 mm (1.06 in.)

Armature Inspection
- Using the × 1 Ω hand tester range, measure the resistance between any two commutator segments [A].

 Special Tool - Hand Tester: 57001-1394
- If there is a high resistance or no reading (∞) between any two segments, a winding is open and the starter motor must be replaced.
- Using the highest hand tester range, measure the resistance between the segments and the shaft [B].
- If there is any reading at all, the armature has a short and the starter motor must be replaced.
16-46 ELECTRICAL SYSTEM

Electric Starter System

NOTE
○ Even if the foregoing checks show the armature to be good, it may be defective in some manner not readily detectable with the hand tester. If all other starter motor and starter motor circuit components check good, but the starter motor still does not turn over or only turns over weakly, replace the starter motor with a new one.

Brush Lead Inspection
• Using the × 1 Ω hand tester range, measure the resistance as shown.
 Terminal Bolt and Positive Brushes [A]
 Brush Plate and Negative Brushes [B]
 Special Tool - Hand Tester: 57001-1394
★ If there is not close to zero ohms, the brush lead has an open. Replace the terminal bolt assy and/or the brush plate assy.

Brush Plate and Terminal Bolt Inspection
• Using the highest hand tester range, measure the resistance as shown.
 Terminal Bolt and Brush Plate [A]
 Terminal Bolt and Negative Brush Holders [B]
 Terminal Bolt and Yoke [C]
 Special Tool - Hand Tester: 57001-1394
★ If there is any reading, the brush plate assy and/or terminal bolt assy have a short. Replace the brush plate assy and the terminal bolt assy.

Starter Relay Inspection
• Remove:
 Bolt [A] and Cover [B]
Electric Starter System

- Disconnect the connector [A].
- Disconnect the starter motor cable [B] and battery positive (+) cable [C] from the starter relay [D].

CAUTION
The battery positive (+) cable with the rubber cap is connected directly to the battery positive (+) terminal even when the ignition switch off, so take care not to short the removed cable to chassis ground.

- Connect the hand tester [A] and 12 V battery [B] to the starter relay [C] as shown.

 Special Tool - Hand Tester: 57001-1394

 ★ If the relay does not work as specified, the relay is defective. Replace the relay.

 Testing Relay

 Tester Range: × 1 Ω range

 Criteria:

 - When battery is connected → 0 Ω
 - When battery is disconnected → ∞ Ω
1. Ignition Switch
2. Water-proof Joint B
3. Starter Lockout Switch
4. Ignition Fuse 10 A
5. Fuse Box
6. Starter Circuit Relay
7. Relay Box
8. Starter Motor
9. Starter Relay
10. Main Fuse 30 A
11. Battery 12 V 10 Ah
12. Sidestand Switch
13. Frame Ground
14. Joint Connector
15. Neutral Switch
16. Water-proof Joint C
17. Starter Button
18. Engine Stop Switch
Lighting System

This motorcycle adopt the daylight system and have a headlight relay in the relay box. The headlight does not go on when the ignition switch and the engine stop switch are first turned on. The headlight comes on after the starter button is released and stays on until the ignition switch is turned off. The headlight will go out momentarily whenever the starter button is pressed and come back on when the button is released.

Headlight Beam Horizontal Adjustment
- Refer to the Headlight Aiming Inspection in the Periodic Maintenance chapter.

Headlight Beam Vertical Adjustment
- Refer to the Headlight Aiming Inspection in the Periodic Maintenance chapter.

Headlight Bulb Replacement
- Remove:
 - Headlight Assy (see Headlight Removal/Installation)
 - Headlight Bulb Dust Cover [A]

- Remove:
 - Hook [A]
 - Headlight Bulb [B]

CAUTION

When handling the quartz-halogen bulb, never touch the glass portion with bare hands. Always use a clean cloth. Oil contamination from hands or dirty rags can reduce bulb life or cause the bulb to explode.

NOTE

○ Clean off any contamination that inadvertently gets on the bulb with alcohol or soap and water solution.

- Replace the headlight bulb.
- Fit the projection [A] of the bulb in the hollow [B] of the headlight.
- Install the hook [C].
16-50 ELECTRICAL SYSTEM

Lighting System

- Fit the dust cover [A] with the “Top” mark upward onto the bulb [B] firmly as shown.
 - Good [C]
 - Bad [D]
 - Top Mark [E]
- After installation, adjust the headlight aim (see Headlight Aiming Inspection in the Periodic Maintenance chapter).

City Light Bulb Replacement
- Remove the headlight assy (see Headlight Removal/Installation).
- Pull out the socket [A] together with the bulb.

- Pull the bulb [A] out of the socket.

CAUTION

Do not turn the bulb. Pull the bulb out to prevent damage to the bulb. Do not use bulb rated for greater wattage then the specified valve.

- Replace the bulb with a new one.
Lighting System

Headlight Removal/Installation

- Remove:
 - Mounting Bolts [A]

- Disconnect the headlight connectors [A] and city light connector [B].
- Remove the headlight assy.
- Remove the upper fairings (see Upper Fairing Removal in the Frame chapter).
- Installation is the reverse of removal.

Tail/Brake Light Removal

- Remove:
 - Seat Covers (see Seat Cover Removal in the Frame chapter)
 - Disconnect the connector [A].
 - Unscrew the mounting bolts [B].
 - Remove the tail/brake light [C].

Tail/Brake Light Installation

- Installation is the reverse of removal.
License Plate Light Bulb Replacement

- Remove:
 - Screws [A]
 - License Plate Light Cover [B]
- Push and turn the bulb counterclockwise and remove it.

- Insert the new bulb [A] by aligning its upper and lower pins [B] with the upper and lower grooves [C] in the socket, and turn the bulb clockwise.
- Turn the bulb about 15°.
- Install the license plate light cover.
- Tighten:

Torque - License Plate Light Cover Screws: 0.90 N·m (0.090 kgf·m, 8 in·lb)
Lighting System

Headlight/Tail Light Circuit

1. Ignition Switch
2. Water-proof Joint A
3. Water-proof Joint B
4. Position Light
5. Headlight (High Beam)
6. Headlight (Low Beam)
7. Dimmer Switch
8. Passing Switch
9. Headlight Relay
10. Relay Box
11. Starter Relay
12. Main Fuse 30 A
13. Battery 12 V 10 Ah
14. Frame Ground
15. Tail/Brake Light
16. License Plate Light 12 V 5 W
17. Joint Connector
18. Water-proof Joint C
19. Regulator/Rectifier
20. Fuse Box
21. Headlight Fuse 10 A
22. Tail Light Fuse 10 A

Turn Signal Light Bulb Replacement
- Unscrew the screw [A] and remove the lens [B].
16-54 ELECTRICAL SYSTEM

Lighting System

• Push and turn the bulb [A] counterclockwise and remove it.

• Insert the new bulb [A] by aligning its upper and lower pins [B] with the upper and lower grooves [C] in the socket, and turn the bulb clockwise.
 ○ Turn the bulb about 15°.
 ● Install the projections of the lens to the dints of the turn signal light.

Turn Signal Relay Inspection

• Remove:
 Left Center Fairing (see Center Fairing Removal in the Frame chapter)
 Turn Signal Relay [A]

* Connect one 12 V battery and turn signal lights as indicated in the figure, and count how many times the lights flash for one minute.
 Turn Signal Relay [A]
 Turn Signal Lights [B]
 12 V Battery [C]
 If the lights do not flash as specified, replace the turn signal relay.

<table>
<thead>
<tr>
<th>Load</th>
<th>The Number of Turn Signal Lights</th>
<th>Wattage (W)</th>
<th>Flashing Times (c/m*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1**</td>
<td>21 or 23</td>
<td>140 – 250</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>42 or 46</td>
<td>75 – 95</td>
</tr>
</tbody>
</table>

(*): Cycle(s) per minute
(**): Corrected to “one light burned out”.

http://mototh.com
Lighting System

Turn Signal Light Circuit

1. Meter Unit
2. Waterproof Joint A
3. Waterproof Joint B
4. Front Right Turn Signal Light
5. Front Left Turn Signal Light
6. Turn Signal Relay
7. Hazard Button
8. Turn Signal Switch
9. Fuse Box
10. Turn Signal Relay Fuse 10 A
11. Main Fuse 30 A
12. Battery 12 V 10 Ah
13. Frame Ground
14. Rear Right Turn Signal Light
15. Rear Left Turn Signal Light
16. Joint Connector
17. Waterproof Joint C
18. Ignition Switch
19. Frame Ground
16-56 ELECTRICAL SYSTEM

Air Switching Valve

Air Switching Valve Operation Test

- Remove the fuel tank (see Fuel Tank Removal in the Fuel System (DFI) chapter).
- Pull the air switching valve hose [A] out of the air cleaner base.

- Take the air switching valve hose end outside of the frame.
- Reinstall the fuel tank (see Fuel Tank Installation in the Fuel System (DFI) chapter).
- Start the engine and run it at idle speed.
- Plug [A] the air switching valve hose [B] end with your finger and feel vacuum pulsing in the hose.
- If there is no vacuum pulsation, check the hose line for leak. If there is no leak, check the air switching valve (see Air Switching Valve Unit Test).
- Apply a soap and water solution or rubber lubricant to the end of the air switching hose and install the hose on the fitting.

Air Switching Valve Unit Test

- Remove the air switching valve (see Air Switching Valve Removal in the Engine Top End chapter).
- Set the hand tester [A] to the × Ω range and connect it to the air switching valve terminals as shown.

Special Tool - Hand Tester: 57001-1394

Air Switching Valve Resistance

Standard: 18 – 22 Ω at 20°C (68°F)

★ If the resistance reading is except the specified value, replace it with a new one.

- Connect the 12 V battery [A] to the air switching valve terminals as shown.
Air Switching Valve

- Blow the air to the inlet air duct [A], and make sure does not flow the blown air from the outlet air duct [B].

- Disconnect the 12 V battery.
- Blow the air to the inlet air duct [A], and make sure does not flow the blown air from the outlet air duct [B].

★ If the air switching value does not operate as described, replace it with a new one.

NOTE
- To check air flow through the air switching valve, just blow through the air cleaner hose [C].
16-58 ELECTRICAL SYSTEM

Radiator Fan System

Fan Motor Inspection
- Disconnect the connector [A].
- Using an auxiliary leads, supply battery power to the fan motor.
 - If the fan does not rotate, the fan motor is defective and must be replaced.

Radiator Fan Circuit

1. Relay Box
2. Radiator Fan Relay
3. ECU Main Relay
4. Fuse Box
5. Fan Fuse 15 A
6. ECU Fuse 15 A
7. Main Fuse 30 A
8. Battery 12 V 10 Ah
9. Frame Ground
10. Joint Connector
11. ECU
12. Water Temperature Sensor
13. Water-proof Joint E
14. Water-proof Joint C
15. Radiator Fan
16. Ignition Switch
17. Water-proof Joint A
18. Water-proof Joint B

http://mototh.com
Meter, Gauge, Indicator Unit

Meter Unit Removal
- Remove:
 - Headlight Assy (see Headlight Removal/Installation)
 - Screws [A] and Cover [B]

- Slide the dust cover [A] and remove the connector [B].
- Remove the meter unit by taking off the mounting screws [C] with the washers.

CAUTION

Place the meter unit so that the face is up. If a meter unit is left upside down or sideways for any length of time, it will malfunction.

Meter, Gauge Disassembly
- Remove:
 - Meter Unit (see Meter Unit Removal)
 - Screws [A]
 - Lower Meter Cover [B]

- Separate the meter assembly [A] and upper meter cover [B].
Electronic Combination Meter Unit Inspection

- Remove the meter unit [A] (see Meter Unit Removal).

1. Battery (+)
2. Ignition
3. Ground (–)
4. Unused
5. Speed Sensor Signal
6. Tachometer Signal
7. Water Temperature Sensor (–)
8. Oil Pressure Warning Indicator Light (LED) (–)
9. Fuel Level Warning Indicator Light (LED) (–)
10. Speed Sensor Supply Voltage
11. High Beam Indicator Light (LED) (+)
12. Neutral Indicator Light (LED) (–)
13. Unused
14. Right Turn Signal Indicator Light (LED) (+)
15. Left Turn Signal Indicator Light (LED) (+)
16. FI Indicator Light (LED) (–)

CAUTION

Do not drop the meter unit. Place the meter unit so that it faces upward. If the meter unit is left upside down or sideways for a long time or dropped, it will malfunction. Do not short each terminals.

Liquid Crystal Display (LCD) Segments Check

- Using the auxiliary wires, connect the 12 V battery to the meter unit connector as follows.

 ○ Connect the battery positive terminal to the terminal [1].
 ○ Connect the battery negative terminal to the terminal [3].

- Connect the terminal [2] to the terminal [1].
When the terminals are connected, all the LCD segments [A] and LED warning lights [B] appear (FI warning light appear for two seconds).

- If the LCD segments and LED warning lights will not appear, replace the meter assembly.
- Disconnect the terminal [2].
- All the LCD segments and LED warning light disappear.
- If the segments do not disappear, replace the meter assembly.

MODE AND RESET BUTTON Operation Check

- Connect the 12 V battery and terminals in the same manner as specified in the “Liquid Crystal Display (LCD) Segments Check”.
- Check that the display change to the CLOCK, ODO, TRIP A and TRIP B displays each time the MODE button [A] is pressed.
- If the fuel level gauge flashed, display change to CLOCK, ODO, TRIP A, TRIP B and FUEL.
- If the display function does not work, replace the meter assembly.

- Indicate the clock mode.
- Check that when the RESET button in CLOCK mode is pushed for more than two seconds, the meter display turns to the clock set mode.
- Both the hour and minute display start flashing.
16-62 ELECTRICAL SYSTEM

Meter, Gauge, Indicator Unit

- In the HOUR/MINUTE setting mode, press the RESET button again to effect the HOUR setting mode.
 ○ The hour display flashes on the display.
- Press the MODE button to set the hour.

- In the HOUR setting mode, press the RESET button to effect the MINUTE setting mode.
 ○ The minute display flashes on the display.
- Press the MODE button to set the minute.

- In the MINUTE setting mode, press the RESET button to return to the HOUR/MINUTE setting mode.
- Press the MODE button to complete the time setting process.
 ○ The clock starts counting the seconds as soon as the MODE button is pressed.

- Indicate the ODO mode.
- Check that the display [A] change to the mile and km display each time by pushing the RESET button while MODE button pushed in.

NOTE

○ Mile/Km display can alternate between English and metric modes (mile and km) in the digital meter. Make sure that km or mile according to local regulations is correctly displayed before riding.

★ If the display function does not work and adjust, replace the meter assembly.

Speedometer Check

- Connect the 12 V battery and terminals in the same manner as specified in the "Liquid Crystal Display (LCD) Segments Check".
- The speed equivalent to the input frequency is indicated in the oscillator [A], if the square wave (illustrated as shown) would be input into the terminal [5].
 ○ Indicates approximately 60 mph in case the input frequency would be approximately 169.0 Hz.
 ○ Indicates approximately 60 km/h in case the input frequency would be approximately 105.6 Hz.
Meter, Gauge, Indicator Unit

- If the oscillator is not available, the speedometer can be checked as follows.
 - Install the meter unit.
 - Raise the rear wheel off the ground with stand.
 - Turn on the ignition switch.
 - Rotate the rear wheel by hand.
 - Check that the speedometer shows the speed.
 - If the speedometer does not work, check the speed sensor electric source voltage and speed sensor.
 - The electric source voltage and speed sensor are normal, replace the meter assembly.

Speed Sensor Electric Source Check
- Connect the 12 V battery and terminals in the same manner as specified in the “Liquid Crystal Display (LCD) Segments Check”.
- Set the hand tester to the DC 25 V range and connect it to the terminals [10] and [3].
 - If the voltage is less than 8 V, replace the meter assembly.

Odometer Check
- Check the odometer with the speedometer in the same way.
 - If value indicated in the odometer is not added, replace the meter assembly.

NOTE
 - The data is maintained even if the battery is disconnected.
 - When the figures come to 999999, they are stopped and locked.

Trip A/B Meter Check
- Check the trip A or B meters with the speedometer in the same way.
 - If value indicated in the trip A/B meters is not added, replace the meter assembly.
 - Check that when the RESET button is pushed for more than two seconds, the figure display turns to 0.0.
 - If the figure display does not indicate 0.0, replace the meter assembly.

Tachometer Check
- Connect the 12 V battery and terminals in the same manner as specified in the “Liquid Crystal Display (LCD) Segments Check”.
 - The revolutions per minute (rpm) equivalent to the input frequency is indicated in the oscillator [A] if the square wave (illustrated as shown) would be input into the terminal [6].
 - Indicates approximately 6,000 rpm in case the input frequency would be approximately 200 Hz.
16-64 ELECTRICAL SYSTEM

Meter, Gauge, Indicator Unit

- If the oscillator is not available, the tachometer can be checked as follows.
 ○ Connect the 12 V battery and terminals in the same manner as specified in the "Liquid Crystal Display (LCD) Segments Check".
 ○ Then the tachometer needle [A] should flick [B].
 ★ If the needle does not flick, replace the meter assembly.

Indicator Lights Inspection

- Connect the 12 V battery and terminals in the same manner as specified in the "Liquid Crystal Display (LCD) Segments check".
 - Neutral Indicator Light (LED) [A]
 - FI Indicator Light (LED) [B]
 - Oil Pressure/Water Temperature Warning Indicator Light (LED) [C]
 - Right Turn Signal Indicator Light (LED) [D]
 - Left Turn Signal Indicator Light (LED) [E]
 - High Beam Indicator Light (LED) [F]
 - Fuel Level Warning Indicator Light (LED) [G]

- Using the auxiliary leads, connect a 12 V battery to the meter unit connector as follows.

Water Temperature Warning Indicator Light (LED)
 Battery Negative (–) Terminal to Terminal [7]

Oil Pressure Warning Indicator Light (LED)
 Battery Negative (–) Terminal to Terminal [8]
Meter, Gauge, Indicator Unit

Fuel Level Warning Indictor Light (LED)
Battery Negative (–) Terminal to Terminal [9]

High Beam Indicator Light (LED)
Battery Positive (+) Terminal to Terminal [11]

Neutral Indicator Light (LED)
Battery Negative (–) Terminal to Terminal [12]

Right and Left Turn Signal Indicator Light (LED)
For Right Turn Signal Indicator Light (LED)
Battery Positive (+) Terminal to Terminal [14]
For Left Turn Signal Indicator Light (LED)
Battery Positive (+) Terminal to Terminal [15]

FI Indicator Light (LED)
Battery Negative (–) Terminal to Terminal [16]

If each lights (LED) does not go on, replace the meter assembly.
1. Ignition Switch
2. Frame Ground
3. Meter Unit
4. Water-proof Joint B
5. ECU Fuse 15 A
6. Ignition Fuse 10 A
7. Fuse Box
8. Main Fuse 30 A
9. Battery 12 V 10 Ah
10. Frame Ground
11. Fuel Reserve Switch
12. Joint Connector
13. ECU
14. Oil Pressure Switch
15. Neutral Switch
16. Water Temperature Sensor
17. Water-proof Joint E
18. Speed Sensor
19. Water-proof Joint C
Switches and Sensors

Brake Light Timing Inspection
• Refer to the Brake Light Switch Operation Inspection in the Periodic Maintenance chapter.

Brake Light Timing Adjustment
• Refer to the Brake Light Switch Operation Inspection in the Periodic Maintenance chapter.

Switch Inspection
• Using a hand tester, check to see that only the connections shown in the table have continuity (about zero ohms).
○ For the switch housings and the ignition switch, refer to the tables in the Wiring Diagram.
★ If the switch has an open or short, repair it or replace it with a new one.

Special Tool - Hand Tester: 57001-1394

Rear Brake Light Switch Connections

<table>
<thead>
<tr>
<th>Color</th>
<th>BR</th>
<th>BL</th>
</tr>
</thead>
<tbody>
<tr>
<td>When brake pedal is pushed down</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>When brake pedal is released</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sidestand Switch Connections

<table>
<thead>
<tr>
<th>Color</th>
<th>BK</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>When sidestand is down</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>When sidestand is up</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Neutral Switch Connections

<table>
<thead>
<tr>
<th>Color</th>
<th>SN Terminal</th>
<th>Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>When transmission is in neutral</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>When transmission is not in neutral</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oil Pressure Switch Connections*

<table>
<thead>
<tr>
<th>Color</th>
<th>SN Terminal</th>
<th>Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>When engine is stopped</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>When engine is running</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: Engine lubrication system is in good condition.
16-68 ELECTRICAL SYSTEM

Switches and Sensors

Water Temperature Sensor Inspection

- Remove the water temperature sensor (see Removal/Installation in the Fuel System (DFI) chapter).
- Suspend the sensor [A] in a container of coolant so that the temperature-sensing projection [C] and threaded portion [C] are submerged.
- Suspend an accurate thermometer [B] with temperature-sensing projection located in almost the same depth.

NOTE

○ The sensor and thermometer must not touch the container side or bottom.

- Place the container over a source of heat and gradually raise the temperature of the coolant while stirring the coolant gently.
- Using the hand tester, measure the internal resistance of the sensor.
- If the hand tester does not show the specified values, replace the sensor.

Water Temperature Sensor Resistance

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Resistance (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>−20°C (−4°F)</td>
<td>*18.80 ±2.37</td>
</tr>
<tr>
<td>0°C (32°F)</td>
<td>*(about 6.544)</td>
</tr>
<tr>
<td>40°C (104°F)</td>
<td>1.136 ±0.095</td>
</tr>
<tr>
<td>100°C (212°F)</td>
<td>0.1553 ±0.0070</td>
</tr>
</tbody>
</table>

*: Reference Information

Speed Sensor Removal

- Disconnect the speed sensor lead connector [A].
- Remove the engine sprocket cover (see Engine Sprocket Removal in the Final Drive chapter).

- Remove:
 - Bolt [A]
 - Speed Sensor [B]

Speed Sensor Installation

- Installation is the reverse of removal.
- Apply a non-permanent locking agent to the sensor bolt, and tighten it.

Torque - Speed Sensor Bolt: 7.8 N·m (0.80 kgf·m, 69 in·lb)
Switches and Sensors

Speed Sensor Inspection

- Remove the speed sensor (see Speed Sensor Removal).
- Connect the speed sensor connector [A] with the battery [B], 10 kΩ resistor [C] and hand tester [D] as shown.
- Set the tester to the DC 25 V range.

 Special Tool - Hand Tester: 57001-1394

- Trace [A] each side of the speed sensor surface with the screwdriver.
 - Then the tester indicator should flick [B].
 - If the tester indicator does not flick, replace the speed sensor.

Oxygen Sensor Removal (Europe Models)

- Remove:
 - Lower Fairing (see Lower Fairing Removal in the Frame chapter)
 - Disconnect the oxygen sensor lead connector [A].

- Remove the oxygen sensor [A].

Oxygen Sensor Installation (Europe Models)

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never drop the oxygen sensor [A], especially on a hard surface. Such a shock to the unit can damage it. Do not touch the sensing part [B] and filter holes [C] of the sensor to prevent oil contact. Oil contamination from hands can reduce sensor performance.</td>
</tr>
</tbody>
</table>

- Tighten:
 - **Torque - Oxygen Sensor: 44.1 N·m (4.50 kgf·m, 32.5 ft·lb)**
- Run the oxygen sensor lead correctly (see Cable, Wire, and Hose Routing section in the Appendix chapter).
16-70 ELECTRICAL SYSTEM

Switches and Sensors

Oxygen Sensor Inspection (Europe Models)
* Refer to the Oxygen Sensor Inspection in the Fuel System (DFI) chapter.

Fuel Reserve Switch Inspection
* Fill the fuel tank with fuel.
* Close the fuel tank cap surely.
* Remove the fuel tank (see Fuel Tank Removal in the Fuel System (DFI) chapter).
* Connect the test light [A] (12 V 3.4 W bulb a socket with leads) and the 12 V battery [B] to the fuel pump connector [C].

Connections:
- Battery (+) → 12 V 3.4 W Bulb (One Side)
- 12 V 3.4 W Bulb (Other Side) → BL Lead Terminal
- Battery (−) → BK Lead Terminal

★ If the test light turn on, the reserve switch is defective. Replace the fuel level sensor.

* Remove the fuel pump (see Fuel Pump Removal in the Fuel System (DFI) chapter).
* Connect the test light (12 V 3.4 W bulb in a socket with leads) and the 12 V battery to the fuel pump connector as shown.
 - 12 V Battery [A]
 - Test Light [B]
 - Fuel Pump Connector [C]
 - Fuel Reserve Switch [D]

★ If the test light doesn’t light, replace the fuel pump.

NOTE
○ It may take a long time to turn on the test light in case that the fuel reserve switch is inspected just after the fuel pump is removed. Leave the fuel reserve switch with leads for inspection connected for few minutes.
Relay Box

The relay box [A] has relays and diodes. The relays and diodes cannot be removed.

Relay Box Removal

- Remove:
 - Fuel Tank (see Fuel Tank Removal in the Fuel System (DFI) chapter)
- Take out the relay box [A] and disconnect the connectors [B].

Relay Circuit Inspection

- Remove the relay box (see Relay Box Removal).
- Check conductivity of the following numbered terminals by connecting the hand tester and one 12 V battery to the relay box as shown (see Relay Box Internal Circuit in this section).
- If the tester does not read as specified, replace the relay box.

Relay Circuit Inspection (with the battery disconnected)

<table>
<thead>
<tr>
<th>Relay Type</th>
<th>Tester Connection</th>
<th>Tester Reading (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headlight Relay</td>
<td>1-3</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td>7-6</td>
<td>∞</td>
</tr>
<tr>
<td>ECU Main Relay</td>
<td>4-5</td>
<td>Not =*</td>
</tr>
<tr>
<td></td>
<td>7-8</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td>9-10</td>
<td>Not =*</td>
</tr>
<tr>
<td>Fuel Pump Relay</td>
<td>11-16</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td>11-12</td>
<td>∞</td>
</tr>
<tr>
<td>Starter Circuit Relay</td>
<td>17-20</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td>18-19</td>
<td>Not =*</td>
</tr>
</tbody>
</table>

*: The actual reading varies with the hand tester used.
16-72 ELECTRICAL SYSTEM

Relay Box

Relay Circuit Inspection (with the battery connected)

<table>
<thead>
<tr>
<th>Relay</th>
<th>Battery Connection (+)</th>
<th>Battery Connection (–)</th>
<th>Tester Connection</th>
<th>Tester Reading (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECU Main Relay</td>
<td>2-11</td>
<td>1-3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-5</td>
<td>7-6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fuel Pump Relay</td>
<td>9-10</td>
<td>7-8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fan Relay</td>
<td>18-19</td>
<td>17-20</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test Connection</th>
<th>Battery Connection (+)</th>
<th>Tester Connection DC 25 V Range</th>
<th>Tester Reading (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-11, 12-13, 12-15, 12-16, 13-14, 13-15</td>
<td>16-12</td>
<td>11-12</td>
<td>Battery Voltage</td>
</tr>
</tbody>
</table>

(+) : Apply positive lead.
(–) : Apply negative lead.

Diode Circuit Inspection

- Remove the relay box (see Relay Box Removal).
- Check conductivity of the following pairs of terminals (see Relay Box Internal Circuit in this section).

Diode Circuit Inspection

★ The resistance should be low in one direction and more than ten times as much in the other direction. If any diode shows low or high in both directions, the diode is defective and the relay box must be replaced.

NOTE

○ The actual meter reading varies with the meter or tester used and the individual diodes, but generally speaking, the lower reading should be from zero to one half the scale.
Relay Box

Relay Box Internal Circuit

A: Headlight Relay
B: ECU Main Relay
C: Fuel Pump Relay
D: Starter Circuit Relay
E: Fan Relay
16-74 ELECTRICAL SYSTEM

Fuse

30 A Main Fuse Removal
- Remove:
 - Left Side Cover (see Side Cover Removal in the Frame chapter)
 - Cover (see Starter Relay Inspection)
 - Connector [A]
- Pull out the main fuse [B] from the starter relay with needle nose pliers.

Fuse Box Fuse Removal
- Remove the seat (see Seat Removal in the Frame chapter).
- Unlock the hook [A] to lift up the lid [B].
- Pull the fuses [A] straight out of the fuse box with needle nose pliers.

15 A ECU Fuse Removal
- Remove:
 - Seat (see Seat Removal in the Frame chapter)
- Unlock the hook [A] to pull the lid [B].
- Pull out the ECU fuse [A] from the fuse box.
Fuse

Fuse Installation
- If a fuse fails during operation, inspect the electrical system to determine the cause, and then replace it with a new fuse of proper amperage.
- Install the fuse box fuses on the original position as specified on the lid.

Fuse Inspection
- Remove the fuse (see 30 A Main/Fuse Box /15 A ECU Fuse Removal).
- Inspect the fuse element.
- If it is blown out, replace the fuse. Before replacing a blown fuse, always check the amperage in the affected circuit. If the amperage is equal to or greater than the fuse rating, check the wiring and related components for a short circuit.

CAUTION

When replacing a fuse, be sure the new fuse matches the specified fuse rating for that circuit. Installation of a fuse with a higher rating may cause damage to wiring and components.
Appendix

Table of Contents

Cable, Wire, and Hose Routing ... 17-2
Troubleshooting Guide ... 17-26
APPENDIX 17-3

Cable, Wire, and Hose Routing

1. Clamp (From the on sequentially, through the left switch housing lead, ignition switch lead and main harness.)
2. Left Switch Housing Lead Connector
3. Clamp (Insert the clamp from air cleaner side.)
4. Air Switching Valve Lead Connector
5. Main Harness
6. Clamp
7. Clamp (Insert the clamp in the frame.)
8. Clamp (Insert the clamp in the frame.)
9. Clamp
10. Inlet Temperature Sensor Lead Connector
11. Clamp (Insert the clamp from air cleaner side.)
12. Ignition Switch Lead Connector
13. Clamp (Clamp the left switch housing lead (main harness side) and ignition switch lead (main harness side).)
17-4 APPENDIX
Cable, Wire, and Hose Routing
Cable, Wire, and Hose Routing

1. Relay Box
2. Main Harness
3. Clamp (Insert the clamp in the bracket.)
4. Battery Negative Cable
5. Battery Positive Cable
6. ECU Connectors
7. Clamp
8. Clamp
9. Tail Light Connector
10. License Plate Light Connector
11. Rear Left Turn Signal Light Connector
12. Rear Right Turn Signal Light Connector
13. Clamp (Insert the clamp in the rear fender rear.)
14. Frame Ground
15. Clamp
16. Water-proof Joint
17. Clamp
18. Fuse Box
19. Clamp
20. Clamp
21. Band
22. Band
23. Clamp
24. To the Vehicle-down Sensor, Crankshaft Sensor and Rear Brake Switch
25. Clamp (Clip the regulator/rectifier lead and battery negative cable, and insert the clamp in the rear fender front.)
26. Battery Negative Lead Connector
27. Fuel Pump Lead
28. Starter Motor Cable
29. To Starter Relay
Cable, Wire, and Hose Routing

1. Inlet Pressure Sensor
2. Turn Signal Relay
3. Clamp (Insert the clamp in the frame.)
4. Horn Lead
5. To the Water Temperature Sensor
6. Oxygen Sensor Lead Connector
7. Clamp (Through the sidestand switch lead and oxygen sensor lead in the clamp.)
8. Oxygen Sensor Lead
9. Clamp (Through the drain hose in the clamp.)
10. Drain Hose
11. Sidestand Switch Lead
12. Corrugated Tube
13. Alternator Lead Connector
14. Sidestand Switch Lead Connector
15. Speed Sensor Lead Connector
16. Main Throttle Sensor Lead Connector
17. Tube
18. Neutral Switch Lead
19. Clamp (Insert the clamp in the engine bracket.)
20. Clamp (Insert the clamp in the cross pipe.)
21. Drain Hose (Through the drain hose between main harness and air cleaner.)
Cable, Wire, and Hose Routing

1. Radiator Fan Connector
2. Clamp (Through the main harness and radiator fan lead, and insert the clamp in the frame.)
3. Through the horn lead between water pipe and frame.
4. To Front Left Turn Signal Light
5. Clamp (Insert the clamp in the bracket.)
6. Clamp (Insert the clamp in the frame.)
7. Clamp (Insert the clamp in the engine bracket.)
Cable, Wire, and Hose Routing

1. Clamp (Through the right switch housing lead, and insert the clamp in the frame.)
2. Clutch Cable
3. Throttle Cables
4. Clamp
5. Right Switch Housing Lead
6. Clamp (Insert the clamp in the bracket.)
7. Clamp (Insert the clamp in the frame.)
8. About 45°
9. Clamp (Insert the clamp in the frame.)
10. Coolant Hose
11. Clamp
12. Clamp (Through the clutch cable in the clamp.)
Cable, Wire, and Hose Routing

1. Crankshaft Sensor Lead Connector
2. Clamp (Insert the clamp in the bracket.)
Cable, Wire, and Hose Routing
Appendix 17-15

Cable, Wire, and Hose Routing

1. Tail Light Connector
2. License Plate Light Connector
3. Rear Right Turn Signal Light Connector
4. Rear Left Turn Signal Light Connector
5. Clamp (Insert the clamp in the rear fender rear.)
6. Clamp (Insert the clamp in the rear fender rear.)
7. Diagnosis Connector
8. Clamp (Insert the clamp in the rear fender front.)
9. Rear Brake Light Switch Lead
10. Band (Clamp the main harness with the frame.)
11. Band
Cable, Wire, and Hose Routing

1. Right Switch Housing Lead
2. Throttle Cables
3. Headlight (LO) Connector
4. Headlight (HI) Connector
5. Brake Hose
6. Clamp
7. Ignition Switch Lead
8. Main Harness
9. Left Switch Housing Lead
10. Clutch Cable
11. City Light Connector
12. Clamp (Insert the clamp in the bracket.)
13. Clamp (Align the clamp with the white tape of the harness.)
14. From the left sequentially, through the clutch cable, left switch housing lead, ignition switch lead and main harness.
15. Clamp (Through the ignition switch lead, and insert the clamp in the bracket.)
Cable, Wire, and Hose Routing

1. Clamp
2. Clamp
3. Clamp
4. Clamp (Clamp the main harness, subthrottle sensor lead and subthrottle valve actuator lead to the delivery pipe.)
5. Ground Lead
6. Clamp
7. Subthrottle Sensor Lead Connector
8. Subthrottle Valve Actuator Lead Connector
9. Clamp (Clamp the harness.)
10. Clamp
11. Clamp
12. Stick Coil Lead Connector
13. Clamp (Clamp the stick coil lead.)
17-20 APPENDIX
Cable, Wire, and Hose Routing
Cable, Wire, and Hose Routing

1. Regulator/Rectifier Lead
2. Clamp (Insert the clamp in the frame.)
3. Rear Brake Light Switch Lead Connector
4. Through the rear brake light switch lead and vehicle-down sensor lead from the front side of the rear shock absorber installation part.
5. Through the regulator/rectifier lead to the front opening of the rear fender front.
6. Vehicle-down Sensor Lead
7. Fuel Pump Lead Connector
8. Through the fuel pump lead to the hook of the rear fender front.
9. Through the fuel pump lead to the slit of the cover.
1. Clamp (Insert the clamp in the front fender.)
2. Brake Hose
3. Clamp
Cable, Wire, and Hose Routing

1. Brake Hose
2. Clamp
3. Clamp
NOTE
○ Refer to the Fuel System chapter for most of DFI trouble shooting guide.
○ This is not an exhaustive list, giving every possible cause for each problem listed. It is meant simply as a rough guide to assist the troubleshooting for some of the more common difficulties.

Engine Doesn’t Start, Starting Difficulty:
Starter motor not rotating:
Starter lockout switch or neutral switch trouble
Starter motor trouble
Battery voltage low
Starter relay not contacting or operating
Starter button not contacting
Wiring open or shorted
Ignition switch trouble
Engine stop switch trouble
Fuse blown

Starter motor rotating but engine doesn’t turn over:
Starter clutch trouble
Vehicle-down sensor (DFI) coming off

Engine won’t turn over:
Valve seizure
Valve lifter seizure
Cylinder, piston seizure
Crankshaft seizure
Connecting rod small end seizure
Connecting rod big end seizure
Transmission gear or bearing seizure
Camshaft seizure
Starter idle gear seizure

No fuel flow:
No fuel in tank
Fuel pump trouble
Fuel tank air vent obstructed
Fuel filter clogged
Fuel line clogged

Engine flooded:
Clean spark plug and adjust plug gap
Starting technique faulty
(When flooded, do not crank the engine with the throttle fully opened. This promotes engine flood because more fuel is supplied automatically by DFI.)

No spark; spark weak:
Vehicle-down sensor (DFI) coming off
Ignition switch not ON
Engine stop switch turned OFF
Clutch lever not pulled in or gear not in neutral
Battery voltage low

Spark plug dirty, broken, or gap maladjusted
Stick coil shorted or not in good contact
Stick coil trouble
Spark plug incorrect
IC igniter in ECU trouble
Neutral, starter lockout, or side stand switch trouble
Crankshaft sensor trouble
Ignition switch or engine stop switch shorted
Wiring shorted or open
Fuse blown

Fuel/air mixture incorrect:
Bypass screw and/or idle adjusting screw maladjusted
Air passage clogged
Air cleaner clogged, poorly sealed, or missing

Compression Low:
Spark plug loose
Cylinder head not sufficiently tightened down
No valve clearance
Cylinder, piston worn
Piston ring bad (worn, weak, broken, or sticking)
Piston ring/groove clearance excessive
Cylinder head gasket damaged
Cylinder head warped
Valve spring broken or weak
Valve not seating properly (valve bent, worn, or carbon accumulation on the seating surface)

Poor Running at Low Speed:
Spark weak:
Battery voltage low
Spark plug dirty, broken, or maladjusted
Stick coil wiring trouble
Stick coil not in good contact
Spark plug incorrect
IC igniter in ECU trouble
Crankshaft sensor trouble
Stick coil trouble

Fuel/air mixture incorrect:
Bypass screw maladjusted
Air passage clogged
Air bleed pipe bleed holes clogged
Pilot passage clogged
Air cleaner clogged, poorly sealed, or missing
Fuel tank air vent obstructed
Fuel pump trouble
Throttle body assy holder loose
Air cleaner duct loose
Troubleshooting Guide

Compression low:
- Spark plug loose
- Cylinder head not sufficiently tightened down
- No valve clearance
- Cylinder, piston worn
- Piston ring bad (worn, weak, broken, or sticking)
- Piston ring/groove clearance excessive
- Cylinder head warped
- Cylinder head gasket damaged
- Valve spring broken or weak
- Valve not seating properly (valve bent, worn, or carbon accumulation on the seating surface)

Other:
- IC igniter in ECU trouble
- Throttle body assy not synchronizing
- Engine oil viscosity too high
- Drive train trouble
- Brake dragging
- Air suction valve trouble
- Air switching valve trouble
- Engine overheating
- Clutch slipping

Poor Running or No Power at High Speed:

Firing incorrect:
- Spark plug dirty, broken, or maladjusted
- Stick coil wiring trouble
- Stick coil not in good contact
- Spark plug incorrect
- Camshaft position trouble
- IC igniter in ECU trouble
- Crankshaft sensor trouble
- Stick coil trouble

Fuel/air mixture incorrect:
- Air cleaner clogged, poorly sealed, or missing
- Air cleaner O-ring damaged
- Air cleaner duct loose
- Water or foreign matter in fuel
- Throttle body assy holder loose
- Fuel to injector insufficient (DFI)
- Fuel tank air vent obstructed
- Fuel line clogged
- Fuel pump trouble

Compression low:
- Spark plug loose
- Cylinder head not sufficiently tightened down
- No valve clearance
- Cylinder, piston worn
- Piston ring bad (worn, weak, broken, or sticking)
- Piston ring/groove clearance excessive

Knocking:
- Carbon built up in combustion chamber
- Fuel poor quality or incorrect
- Spark plug incorrect
- IC igniter in ECU trouble
- Crankshaft sensor trouble

Miscellaneous:
- Throttle valve won't fully open
- Brake dragging
- Clutch slipping
- Engine overheating
- Engine oil level too high
- Drive train trouble
- Air suction valve trouble
- Air switching valve trouble
- Catalytic converter melt down due to muffler overheating (KLEEN)

Overheating:

Firing incorrect:
- Spark plug dirty, broken, or maladjusted
- Spark plug incorrect
- IC igniter in ECU trouble

Muffler overheating:
- For KLEEN, do not run the engine even if with only one cylinder misfiring or poor running (Request the nearest service facility to correct it)
- For KLEEN, do not push-start with a dead battery (Connect another full-charged battery with jumper cables, and start the engine using the electric starter)
- For KLEEN, do not start the engine under misfire due to spark plug fouling or poor connection of the stick coil
- For KLEEN, do not coast the motorcycle with the ignition switch off (Turn the ignition switch ON and run the engine)
- IC igniter in ECU trouble

Fuel/air mixture incorrect:
- Throttle body assy holder loose
- Air cleaner duct loose
- Air cleaner poorly sealed, or missing
- Air cleaner O-ring damaged
- Air cleaner clogged

Compression high:
- Carbon built up in combustion chamber

Engine load faulty:
- Clutch slipping
- Engine oil level too high
Troubleshooting Guide

Engine oil viscosity too high
Drive train trouble
Brake dragging

Lubrication inadequate:
Engine oil level too low
Engine oil poor quality or incorrect

Gauge incorrect:
Water temperature gauge broken
Water temperature sensor broken

Coolant incorrect:
Coolant level too low
Coolant deteriorated
Wrong coolant mixed ratio

Cooling system component incorrect:
Radiator fin damaged
Radiator clogged
Thermostat trouble
Radiator cap trouble
Radiator fan relay trouble
Fan motor broken
Fan blade damaged
Water pump not turning
Water pump impeller damaged

Over Cooling:
Gauge incorrect:
Water temperature gauge broken
Water temperature sensor broken

Cooling system component incorrect:
Radiator fan relay trouble
Thermostat trouble

Clutch Operation Faulty:
Clutch slipping:
Friction plate worn or warped
Steel plate worn or warped
Clutch spring broken or weak
Clutch hub or housing unevenly worn
No clutch lever play
Clutch inner cable trouble
Clutch release mechanism trouble

Clutch not disengaging properly:
Clutch plate warped or too rough
Clutch spring compression uneven
Engine oil deteriorated
Engine oil viscosity too high
Engine oil level too high
Clutch housing frozen on drive shaft
Clutch hub nut loose
Clutch hub spline damaged
Clutch friction plate installed wrong
Clutch lever play excessive
Clutch release mechanism trouble

Gear Shifting Faulty:
Doesn’t go into gear; shift pedal doesn’t return:
Clutch not disengaging
Shift fork bent or seized
Gear stuck on the shaft
Gear positioning lever binding
Shift return spring weak or broken
Shift return spring pin loose
Shift mechanism arm spring broken
Shift mechanism arm broken
Shift pawl broken

Jumps out of gear:
Shift fork ear worn, bent
Gear groove worn
Gear dogs and/or dog holes worn
Shift drum groove worn
Gear positioning lever spring weak or broken
Shift fork guide pin worn
Drive shaft, output shaft, and/or gear splines worn

Overshifts:
Gear positioning lever spring weak or broken
Shift mechanism arm spring broken

Abnormal Engine Noise:
Knocking:
IC igniter in ECU trouble
Carbon built up in combustion chamber
Fuel poor quality or incorrect
Spark plug incorrect
Overheating

Piston slap:
Cylinder/piston clearance excessive
Cylinder, piston worn
Connecting rod bent
Piston pin, piston pin hole worn

Valve noise:
Valve clearance incorrect
Valve spring broken or weak
Camshaft bearing worn
Valve lifter worn

Other noise:
Connecting rod small end clearance excessive
Connecting rod big end clearance excessive
Piston ring/groove clearance excessive
Piston ring worn, broken, or stuck
Piston ring groove worn
Piston seizure, damage
Cylinder head gasket leaking
Exhaust pipe leaking at cylinder head connection
Crankshaft runout excessive

http://mototh.com
Troubleshooting Guide

Engine mount loose
Crankshaft bearing worn
Primary gear worn or chipped
Camshaft chain tensioner trouble
Camshaft chain, sprocket, guide worn
Air suction valve damaged
Air switching valve damaged
Alternator rotor loose
Catalytic converter melt down due to muffler overheating (KLEEN)

Abnormal Drive Train Noise:
Clutch noise:
- Clutch housing/friction plate clearance excessive
- Clutch housing gear worn
- Wrong installation of outside friction plate

Transmission noise:
- Bearings worn
- Transmission gear worn or chipped
- Metal chips jammed in gear teeth
- Engine oil insufficient

Drive line noise:
- Drive chain adjusted improperly
- Drive chain worn
- Rear and/or engine sprocket worn
- Chain lubrication insufficient
- Rear wheel misaligned

Abnormal Frame Noise:
Front fork noise:
- Oil insufficient or too thin
- Spring weak or broken

Rear shock absorber noise:
- Shock absorber damaged

Disc brake noise:
- Pad installed incorrectly
- Pad surface glazed
- Disc warped
- Caliper trouble

Other noise:
- Bracket, nut, bolt, etc. not properly mounted or tightened

Oil Pressure Warning Light Goes On:
- Engine oil pump damaged
- Engine oil screen clogged
- Engine oil filter clogged
- Engine oil level too low
- Engine oil viscosity too low
- Camshaft bearing worn
- Crankshaft bearing worn
- Oil pressure switch damaged
- Wiring faulty
- Relief valve stuck open

O-ring at the oil passage in the crankcase damaged

Exhaust Smokes Excessively:
White smoke:
- Piston oil ring worn
- Cylinder worn
- Valve oil seal damaged
- Valve guide worn
- Engine oil level too high

Black smoke:
- Air cleaner clogged

Brown smoke:
- Air cleaner duct loose
- Air cleaner O-ring damaged
- Air cleaner poorly sealed or missing

Handling and/or Stability Unsatisfactory:
Handlebar hard to turn:
- Cable routing incorrect
- Hose routing incorrect
- Wiring routing incorrect
- Steering stem nut too tight
- Steering stem bearing damaged
- Steering stem bearing lubrication inadequate
- Steering stem bent
- Tire air pressure too low

Handlebar shakes or excessively vibrates:
- Tire worn
- Swingarm pivot bearing worn
- Rim warped, or not balanced
- Wheel bearing worn
- Handlebar holder bolt loose
- Steering stem nut loose
- Front, rear axle runout excessive
- Engine mounting bolt loose

Handlebar pulls to one side:
- Frame bent
- Wheel misalignment
- Swingarm bent or twisted
- Swingarm pivot shaft runout excessive
- Steering maladjusted
- Front fork bent
- Right and left front fork oil level uneven

Shock absorption unsatisfactory:
(Too hard)
- Front fork oil excessive
- Front fork oil viscosity too high
- Rear shock absorber adjustment too hard
- Tire air pressure too high
- Front fork bent

(Too soft)
- Tire air pressure too low
- Front fork oil insufficient and/or leaking
- Front fork oil viscosity too low
17-30 APPENDIX

Troubleshooting Guide

Rear shock adjustment too soft
Front fork, rear shock absorber spring weak
Rear shock absorber oil leaking

Brake Doesn't Hold:
- Air in the brake line
- Pad or disc worn
- Brake fluid leakage
- Disc warped
- Contaminated pad
- Brake fluid deteriorated
- Primary or secondary cup damaged in master cylinder
- Master cylinder scratched inside

Battery Trouble:

Battery discharged:
- Charge insufficient
- Battery faulty (too low terminal voltage)
- Battery lead making poor contact
- Load excessive (e.g., bulb of excessive wattage)
- Ignition switch trouble
- Alternator trouble
- Wiring faulty
- Regulator/rectifier trouble

Battery overcharged:
- Alternator trouble
- Regulator/rectifier trouble
- Battery faulty

http://mototh.com
MODEL APPLICATION

<table>
<thead>
<tr>
<th>Year</th>
<th>Model</th>
<th>Beginning Frame No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>ER650A6F</td>
<td>JKAEREA1□6A000001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ER650A-000001</td>
</tr>
<tr>
<td>2006</td>
<td>ER650A6S</td>
<td>JKAER650AAA000001</td>
</tr>
</tbody>
</table>

- This digit in the frame number changes from one machine to another.